Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry
Гидротермальным синтезом получены пластинчатые частицы литий-железного фосфата размерами 100–150 нм и толщиной до 10 нм. Целью было исследование влияния относительного содержания этиленгликоля и температуры реакционной среды на фазовый состав полученных материалов, их кристаллическую и магнитную мик...
Saved in:
| Published in: | Наносистеми, наноматеріали, нанотехнології |
|---|---|
| Date: | 2017 |
| Main Authors: | , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2017
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/140669 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry / V.O. Kotsyubynsky, B.K. Ostafiychuk, R.P. Lisovsky, V.V. Moklyak, A.B. Hrubiak, I.I. Hryhoruk, Al-Saedi Abdul Halek Zamil // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2017. — Т. 15, № 4. — С. 675-686. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-140669 |
|---|---|
| record_format |
dspace |
| spelling |
Kotsyubynsky, V.O. Ostafiychuk, B.K. Lisovsky, R.P. Moklyak, V.V. Hrubiak, A.B. Hryhoruk, I.I. Al-Saedi Abdul Halek Zamil 2018-07-13T16:14:52Z 2018-07-13T16:14:52Z 2017 Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry / V.O. Kotsyubynsky, B.K. Ostafiychuk, R.P. Lisovsky, V.V. Moklyak, A.B. Hrubiak, I.I. Hryhoruk, Al-Saedi Abdul Halek Zamil // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2017. — Т. 15, № 4. — С. 675-686. — Бібліогр.: 24 назв. — англ. 1816-5230 PACS: 61.05.cp, 61.05.Qr, 68.37.Lp, 81.07.-b, 81.16.-c, 82.45.Yz, 82.47.Aa https://nasplib.isofts.kiev.ua/handle/123456789/140669 Гидротермальным синтезом получены пластинчатые частицы литий-железного фосфата размерами 100–150 нм и толщиной до 10 нм. Целью было исследование влияния относительного содержания этиленгликоля и температуры реакционной среды на фазовый состав полученных материалов, их кристаллическую и магнитную микроструктуры, состояние поверхности и электрические свойства. Установлено, что имеется корреляция между морфологией материалов и их электрохимическими свойствами. Уменьшение размера частиц и степени агломерации приводит к увеличению удельной ёмкости литиевых источников энергии с катодами на основе синтезированных материалов. Гідротермічною синтезою одержано платівчасті частинки літій-залізного фосфату розмірами у 100–150 нм і товщиною до 10 нм. Метою було дослідження впливу відносного вмісту етиленгліколю та температури реакційного середовища на фазовий склад одержаних матеріялів, їхні кристалічну та магнетну мікроструктури, стан поверхні й електричні властивості. Визначено, що є кореляція між морфологією матеріялів та їхніми електрохемічними властивостями. Зменшення розміру частинок і ступеня аґломерації приводить до підвищення питомої місткости літійових джерел живлення з катодами на основі синтезованих матеріялів. Lithium iron phosphate plate-like particles of 100–150 nm sizes and to 10 nm thickness have been obtained by hydrothermal synthesis. It has been aim to investigate influence of ethylene glycol relative content and reaction medium temperature on the obtained-materials’ phase composition, crystalline and magnetic microstructure, surface condition and electrical properties. As determined, there is correlation between the materials’ morphology and their electrochemical properties. The reducing of a particle size and agglomeration degree leads to specific capacity growing for lithium power sources with cathodes based on synthesized materials. The publication contains the results of studies conducted under the President’s of Ukraine grant for competitive projects of the State Fund for Fundamental Research. en Інститут металофізики ім. Г.В. Курдюмова НАН України Наносистеми, наноматеріали, нанотехнології Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry |
| spellingShingle |
Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry Kotsyubynsky, V.O. Ostafiychuk, B.K. Lisovsky, R.P. Moklyak, V.V. Hrubiak, A.B. Hryhoruk, I.I. Al-Saedi Abdul Halek Zamil |
| title_short |
Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry |
| title_full |
Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry |
| title_fullStr |
Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry |
| title_full_unstemmed |
Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry |
| title_sort |
plate-like lifepo₄ nanoparticles: synthesis, structure, electrochemistry |
| author |
Kotsyubynsky, V.O. Ostafiychuk, B.K. Lisovsky, R.P. Moklyak, V.V. Hrubiak, A.B. Hryhoruk, I.I. Al-Saedi Abdul Halek Zamil |
| author_facet |
Kotsyubynsky, V.O. Ostafiychuk, B.K. Lisovsky, R.P. Moklyak, V.V. Hrubiak, A.B. Hryhoruk, I.I. Al-Saedi Abdul Halek Zamil |
| publishDate |
2017 |
| language |
English |
| container_title |
Наносистеми, наноматеріали, нанотехнології |
| publisher |
Інститут металофізики ім. Г.В. Курдюмова НАН України |
| format |
Article |
| description |
Гидротермальным синтезом получены пластинчатые частицы литий-железного фосфата размерами 100–150 нм и толщиной до 10 нм. Целью было исследование влияния относительного содержания этиленгликоля и температуры реакционной среды на фазовый состав полученных материалов, их кристаллическую и магнитную микроструктуры, состояние поверхности и электрические свойства. Установлено, что имеется корреляция между морфологией материалов и их электрохимическими свойствами. Уменьшение размера частиц и степени агломерации приводит к увеличению удельной ёмкости литиевых источников энергии с катодами на основе синтезированных материалов.
Гідротермічною синтезою одержано платівчасті частинки літій-залізного фосфату розмірами у 100–150 нм і товщиною до 10 нм. Метою було дослідження впливу відносного вмісту етиленгліколю та температури реакційного середовища на фазовий склад одержаних матеріялів, їхні кристалічну та магнетну мікроструктури, стан поверхні й електричні властивості. Визначено, що є кореляція між морфологією матеріялів та їхніми електрохемічними властивостями. Зменшення розміру частинок і ступеня аґломерації приводить до підвищення питомої місткости літійових джерел живлення з катодами на основі синтезованих матеріялів.
Lithium iron phosphate plate-like particles of 100–150 nm sizes and to 10 nm thickness have been obtained by hydrothermal synthesis. It has been aim to investigate influence of ethylene glycol relative content and reaction medium temperature on the obtained-materials’ phase composition, crystalline and magnetic microstructure, surface condition and electrical properties. As determined, there is correlation between the materials’ morphology and their electrochemical properties. The reducing of a particle size and agglomeration degree leads to specific capacity growing for lithium power sources with cathodes based on synthesized materials.
The publication contains the results of studies conducted under the President’s of Ukraine grant for competitive projects of the State Fund for Fundamental Research.
|
| issn |
1816-5230 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/140669 |
| citation_txt |
Plate-Like LiFePO₄ Nanoparticles: Synthesis, Structure, Electrochemistry / V.O. Kotsyubynsky, B.K. Ostafiychuk, R.P. Lisovsky, V.V. Moklyak, A.B. Hrubiak, I.I. Hryhoruk, Al-Saedi Abdul Halek Zamil // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2017. — Т. 15, № 4. — С. 675-686. — Бібліогр.: 24 назв. — англ. |
| work_keys_str_mv |
AT kotsyubynskyvo platelikelifepo4nanoparticlessynthesisstructureelectrochemistry AT ostafiychukbk platelikelifepo4nanoparticlessynthesisstructureelectrochemistry AT lisovskyrp platelikelifepo4nanoparticlessynthesisstructureelectrochemistry AT moklyakvv platelikelifepo4nanoparticlessynthesisstructureelectrochemistry AT hrubiakab platelikelifepo4nanoparticlessynthesisstructureelectrochemistry AT hryhorukii platelikelifepo4nanoparticlessynthesisstructureelectrochemistry AT alsaediabdulhalekzamil platelikelifepo4nanoparticlessynthesisstructureelectrochemistry |
| first_indexed |
2025-11-26T20:25:48Z |
| last_indexed |
2025-11-26T20:25:48Z |
| _version_ |
1850773389540589568 |
| fulltext |
675
PACS numbers: 61.05.cp, 61.05.Qr, 68.37.Lp, 81.07.-b, 81.16.-c, 82.45.Yz, 82.47.Aa
Plate-Like LiFePO4 Nanoparticles: Synthesis, Structure,
Electrochemistry
V. O. Kotsyubynsky1, B. K. Ostafiychuk2, R. P. Lisovsky1,
V. V. Moklyak2, A. B. Hrubiak1, I. I. Hryhoruk1,
and Al-Saedi Abdul Halek Zamil3
1Vasyl Stefanyk Precarpathian National University,
57 Shevchenko Str.,
76018 Ivano-Frankivsk, Ukraine
2G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine,
36 Academician Vernadsky Blvd.,
UA-03142 Kyiv, Ukraine
3South Ukrainian National Pedagogical University Named After K. D. Ushynsky,
26 Staroportofrankivs’ka Str.,
65020 Odesa, Ukraine
Lithium iron phosphate plate-like particles of 100–150 nm sizes and to 10
nm thickness have been obtained by hydrothermal synthesis. It has been
aim to investigate influence of ethylene glycol relative content and reac-
tion medium temperature on the obtained-materials’ phase composition,
crystalline and magnetic microstructure, surface condition and electrical
properties. As determined, there is correlation between the materials’
morphology and their electrochemical properties. The reducing of a parti-
cle size and agglomeration degree leads to specific capacity growing for
lithium power sources with cathodes based on synthesized materials.
Гідротермічною синтезою одержано платівчасті частинки літій-
залізного фосфату розмірами у 100–150 нм і товщиною до 10 нм. Ме-
тою було дослідження впливу відносного вмісту етиленгліколю та тем-
ператури реакційного середовища на фазовий склад одержаних матері-
ялів, їхні кристалічну та магнетну мікроструктури, стан поверхні й
електричні властивості. Визначено, що є кореляція між морфологією
матеріялів та їхніми електрохемічними властивостями. Зменшення ро-
зміру частинок і ступеня аґломерації приводить до підвищення питомої
місткости літійових джерел живлення з катодами на основі синтезова-
них матеріялів.
Гидротермальным синтезом получены пластинчатые частицы литий-
железного фосфата размерами 100–150 нм и толщиной до 10 нм. Це-
Наносистеми, наноматеріали, нанотехнології
Nanosistemi, Nanomateriali, Nanotehnologii
2017, т. 15, № 4, сс. 675–686
2017 ІÌÔ (Іíñòèòóò ìåòàëîôіçèêè
іì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàїíи)
Надруковано в Óкраїні.
Ôотокопіювання дозволено
тільки відповідно до ліцензії
http://en.wikipedia.org/wiki/G._V._Kurdyumov_Institute_for_Metal_Physics_of_the_National_Academy_of_Sciences_of_Ukraine
676 V. O. KOTSYUBYNSKY, B. K. OSTAFIYCHUK, R. P. LISOVSKY et al.
лью было исследование влияния относительного содержания эти-
ленгликоля и температуры реакционной среды на фазовый состав по-
лученных материалов, их кристаллическую и магнитную микрострук-
туры, состояние поверхности и электрические свойства. Óстановлено,
что имеется корреляция между морфологией материалов и их электро-
химическими свойствами. Óменьшение размера частиц и степени агло-
мерации приводит к увеличению удельной ёмкости литиевых источни-
ков энергии с катодами на основе синтезированных материалов.
Key words: lithium iron phosphate, nanoparticles, morphology, conductiv-
ity, cathode, lithium power sources.
Ключові слова: літій-залізний фосфат, наночастинки, морфологія, про-
відність, катода, літійові джерела живлення.
Ключевые слова: литий-железный фосфат, наночастицы, морфология,
проводимость, катод, литиевые источники питания.
(Received 10 April, 2017)
1. INTRODUCTION
Specific energy density of lithium iron phosphate (LiFePO4) is com-
pared to best commercial compounds LiCoO2, LiNiO2, LiMn2O4. At
the same time, the material is characterized by a slower rate of ca-
pacity loss, high reversible capacity of about 170 Ah/kg at an
open-circuit voltage of 3.45 V versus Li/Li
(Fe2/Fe3 redox couple)
with long cycle ability (typically more than 2.000 charge–discharge
cycles at 1C current rate with approximately 80% capacity saving)
[1]. The other advantages are high charge–discharge current rates
up to 10C, good safety owing to high thermal stability, flat
charge/discharge curves (reversible LiFePO4/FePO4-phases’ trans-
formation), low cost of production and utilization. The key point is
a high performance of cathode material but low electronic conduc-
tivity and one-dimensional diffusion of lithium ions require small
particle sizes and shape control during the synthesis. The main im-
perfection of LiFePO4 is low conductivity (about 10
9 S/cm in com-
parison with 10
4 S/cm for LiCoO2 and 10
6 S/cm for LiCoO2), which
complicates a theoretical capacity obtainment at high discharge cur-
rent rates [2, 3]. Another problem is a one-dimensional slow diffu-
sion of Li+ ions (10
13–10
14 cm2/s for LiFePO4 and about 10
16 cm2/s
for FePO4). LiFePO4 particles’ carbon coating or non-stoichiometric
material synthesis is usually used for conductivity increasing [2, 4–
6]. Another approach consists of particles sizes reduction for the
lengths of ionic and electronic transport reducing [7].
Alongside with it, high specific surface area and low coordinated
https://en.wikipedia.org/wiki/Open-circuit_voltage
LiFePO4 NANOPARTICLES: SYNTHESIS, STRUCTURE, ELECTROCHEMISTRY 677
surface atoms may cause particles agglomeration and surface reac-
tions. As a result, the properties of the LiFePO4 crucially depend on
the synthesis route and the modification of it allows a predictable
change of material morphological and electrical characteristics.
There is a wide range of different approaches to LiFePO4 obtaining:
solid-state methods, sol–gel route, microemulsion method [8–10].
A special place is taken by hydrothermal synthesis that allows to
control additionally a reaction medium during the process and to
influence actively the particles morphology [11].
The objective of this research is to improve the plate-like LiFePO4
nanoparticles obtaining method by hydrothermal synthesis and to
find regularities between the materials’ electrical and morphological
properties and their electrochemical performance.
2. MATERIALS AND METHODS
Nanoparticles of LiFePO4 were prepared according to the following
procedure [12]: 1 mole/L H3PO4 was mixed with ethylene glycol at a
different ratio with the next 1 mole/L LiOH aqueous solution drop-
wise addition under mechanical stirring. At the last stage, 3 mole/L
FeSO47H2O aqueous solution was added to a white suspension
formed after the neutralization reaction. Green coloured resulting
suspension was sealed into a 0.5 L magnetic mixed autoclave. The
autoclave was heated to a temperature of 200–240C at heating rate
of 3–4C/min with the exposure for 1–5 hours under stirring.
Thereafter, the autoclave was cooled to room temperature. The col-
loidal suspension was collected via centrifuge and washed with dis-
tilled water up to neutral pH. The obtained materials were dried
under vacuum at 70–80C for 8 h.
The two systems (S1 and S2) of materials were synthesized at
those conditions. S1 series samples were differed by their relative
content of ethylene glycol in the initial mixture and were obtained
at 240C (Table). Samples series S2 were obtained at 67 vol.% eth-
ylene glycol relative content after exposure at 2 different tempera-
tures, 200 and 220C. For carbon coating formation, the S1-3 sam-
ple were mixed with 17 wt.% of glucose and then sintered at 400C
TABLE. S1 samples synthesis conditions.
Sample Ethylene glycol relative content, vol. % pH of initial mixture
S1-1 40 3.9
S1-2 57 4.4
S1-3 67 4.6
S1-4 77 5.0
678 V. O. KOTSYUBYNSKY, B. K. OSTAFIYCHUK, R. P. LISOVSKY et al.
for 1 h under argon atmosphere with a heating rate of 5–6C/min.
Diffraction patterns were obtained with diffractometer DRON-4-
07 (CuK radiation). Bragg–Brentano geometry type and a NiK-
filter were applied. A quantitative analysis was done with a full
pattern Rietveld refinement procedure using FullFrof Suite Pro-
gram [12 XRD measurements were collected in a 2 range of 16–
65.
High-resolution transmission electron microscopy (HRTEM) im-
ages were obtained by a microscope FEI Tecnai Orisis TEM/STEM
80–200 at a 200 kV. The samples were ultrasonically mixed in iso-
propyl alcohol and deposited on silica substrates.
The Mössbauer spectra were measured with a MS-1104Еm spec-
trometer using a 57Co -ray source and calibrated at room tempera-
ture with -Fe as a standard (linewidth 0.29 mm/s). The isomer
shifts () are relative to Fe metal. The model fitting was performed
using Mosswin 3.0 software.
The Brunauer–Emmett–Teller (BET) specific surface areas of the
samples were measured by Nitrogen adsorption/desorption methods
at 77 K with a Quantachrome NOVA 2200e analyser.
Electrochemical impedance spectroscopy with Autolab PGSTAT
12 galvanostat/potentiostat (conventional four-electrode configura-
tion) was used to explore the conductivity of the obtained samples
over the frequency range 0.01 Hz–100 kHz.
Electrochemical lithium intercalation/deintercalation tests were
performed in Swagelok-type cells assembled in an argon-filled dry
glow box. The negative electrode was a lithium metal foil. The elec-
trolyte was 1 mole/L LiBF4 dissolved in -butyrolactone. Cathode
mixture consisted of the obtained materials, black carbon and PVDF
(mass ratio 85:10:5) in acetone was prepared in the paste form. The
positive electrode was Ni grid coated by cathode mixture. The cell
was charged and discharged at a rate of C/10. All electrochemical
tests were carried out at room temperature.
3. RESULTS AND DISCUSSION
According to XRD data (Fig. 1), S1-2 and S1-3 materials were a
pure LiFePO4 [14].
A presence of Fe2P2O7 (more than 55 wt.%) impurity phase for
S1-4 sample has been observed. The most interesting is a S1-1 sam-
ple. The intensive peak at 217.37 on the XRD pattern for this
sample was originally identified as a yield of LiFeP2O7 phase pres-
ence. However, in LiFeP2O7 compound, the iron is in a Fe3+ state.
As a result, it leads to the predicted differences between the contri-
butions of LiFeP2O7 and LiFePO4 phases to the Mössbauer spectra
integral intensity (Fig. 2). A doublet component presence with
LiFePO4 NANOPARTICLES: SYNTHESIS, STRUCTURE, ELECTROCHEMISTRY 679
quadrupole splitting () in particular is less than 1 mm/s and could
be considered as an evidence of LiFeP2O7 phase. At the same time,
Mössbauer spectra of S1-1 sample consist of two doublet compo-
nents.
A dominating doublet component with integral intensity relative
content of about 92% corresponds to LiFePO4 (2.93 mm/s,
1.21 mm/s). The obtained parameters of Mössbauer spectra are
very close to the literature data for LiFePO4 [15]. The integral rela-
tive intensity of the second doublet component (0.54 mm/s,
Fig. 1. XRD patterns of S1 system samples.
Fig. 2. Mössbauer spectra of S1 system samples.
680 V. O. KOTSYUBYNSKY, B. K. OSTAFIYCHUK, R. P. LISOVSKY et al.
0.42 mm/s) does not exceed 8%; so, the assumption about
LiFeP2O7 phase availability has been neglected.
Another working hypothesis is a sharp anisotropy of LiFePO4
particles’ shape that causes redistribution of diffraction peaks in-
tensity. In the case of plate-like particles, the peak at 217.37
will correspond to (200) reflex of the LiFePO4 structure (result of
XRD pattern modelling with the use of PowderCell software and
Rietveld–Toraya model) [16]. This assumption is confirmed by TEM
investigations (Fig. 3).
The S1-1 sample is formed by separated plate-like particles of
LiFePO4 with the sizes of 200–300 nm and of thickness to 20–30
nm with crystal orientation along the bc facet. The particles lamel-
lar morphology also happens in S1-2 and S1-3 materials, but this
form is not dominant, and the majority of particles are prismatic
(Fig. 3). It can be assumed that the ethylene glycol molecules after
absorption on the LiFePO4 nuclei prevent crystal growth. Similar
results (preferred crystal orientation with a (200) texture) were ob-
a b c
Fig. 3. TEM picture of S1 system samples.
Fig. 4. XRD patterns of S2 system samples.
LiFePO4 NANOPARTICLES: SYNTHESIS, STRUCTURE, ELECTROCHEMISTRY 681
tained in [17] in a case of LiFePO4 hydrothermal synthesis.
One of the biggest problems in LiFePO4 synthesis is to determine
the conditions for a pure phase obtaining and to prevent oxidation
of Fe2 to Fe3. The presence of Fe3+ is systematically detected by
Mössbauer spectroscopy measurements of LiFePO4 nanoparticles at
the absence of additional iron-containing phase [15]. One of the rea-
sons for this phenomenon is the process of surface iron oxidation in
the oxygen-containing medium [18]. Small contents of Fe3 ions in
LiFePO4 could be caused by the Li
ions’ substitution for Fe2 sites
with the next oxidation of some Fe2 to Fe3 for charge compensa-
tion. Additional electron density on the lithium sites was fixed in
[19]. The substitution does not cause significant structural changes
because the ionic radii of Fe2 and Fe3 are close (92 and 79 pm, re-
spectively) and phosphorus-oxygen [PO4] polyhedra are strongly
bonded. Formation of Fe3 ions can be stimulated by the aqueous
medium too [20].
Mössbauer spectroscopy is a good technique to investigate local
electronic structure and coordination of Fe ions. The establishment
of Fe3+ ions coordination type from the isomer shift calibration is
possible. The following criteria can be used: Fe3 (tetrahedral coor-
dinated)0.3–0.4 mm/sFe3 (octahedral coordinated) [15].
This value suggests that a minor doublet component is a result of
Fe3+ ions presence in both coordination states. This estimation can
be indirect evidence of the Fe3+ ions presence on disordered surface
shell of the LiFePO4 particles.
Mössbauer spectra of S1-2 and S1-3 materials have the composi-
tion similar to S1-1 with the relative content of Fe3 ion of 11 and
13%, respectively. From this, it follows that LiFePO4 yield decreas-
es with the increasing pH of initial precursor mixture. The result
obtained is contrary to the data about an increase of the lithium
iron phosphate yield with pH growth linked to LiFePO4 solubility
enlarging in acidic condition under excessive pressure and at high
temperature [17].
With XRD patterns of S2 system samples obtained at hydrother-
mal treatment temperature of 200 and 220C at the same ethylene
glycol contents (marked S2-1 and S2-2), no additional phases except
LiFePO4 have been fixed in either case (Fig. 4). The average size of
coherent scattering regions some decrease (from 16 to 14 nm) with
the synthesis temperature elevation is possible. This result corre-
lates to the adsorption porosimetry data: the specific surface areas
of the S2-1 and S2-2 materials are 17 and 13 m2/g, respectively.
The relative content of Fe3+ ions for S2-1 and S2-2 materials is
unexpectedly high, i.e., 18 and 21%, respectively (Fig. 5). The iso-
mer shift and quadruple splitting of minor doublet component for
S2-1 and S2-2 are very close to the characteristic parameters of S1
682 V. O. KOTSYUBYNSKY, B. K. OSTAFIYCHUK, R. P. LISOVSKY et al.
system samples. At the same time, some morphological differences
have been found. For S2-1 sample, agglomerates with the sizes of
0.3–1.0 m consisting of ordered separate prismatic particles of
100–150 nm are typical. For S2-2 sample, such ordering has not
been observed, and agglomerates with the close sizes are formed by
primary particles with different sizes and shapes (Fig. 6).
The increasing of Fe3 ions to 25% was observed after carbon
coating procedure for S1-3 sample. Mössbauer spectra parameters
for the minor doublet component were as follow: 0.84 mm/s and
0.43 mm/s (Fig. 7). Those parameters were close to Fe4P6O21 fer-
ric pyrophosphate characteristics (0.80 mm/s and 0.42
mm/s), but that compound formation is hardly probable [21].
The frequency dependences of the complex conductivity for S1-3
and S1-3/carbon samples were obtained by the impedance spectros-
copy method (Fig. 8). The curves for both samples can be divided
into two regions: the linear frequency independent part and the sec-
ond one where conductivity increases with frequency enlarging. The
obtained dispersion curves were approximated by Jonscher’s power
law [22]:
( ) 1 ,
s
dc
h
(1)
where dc is the frequency independent part of conductivity, h is
the hopping frequency of the charge carriers, and s is an exponent
parameter characterizing the deviation of the system from the De-
bye-type state (of s1). The parameter s is a measure of the interi-
onic–environmental coupling strength and, for most cases, is in the
range of 0s 1. Alongside with it, there is no physical reasons
Fig. 5. Mössbauer spectra of S2 system samples.
LiFePO4 NANOPARTICLES: SYNTHESIS, STRUCTURE, ELECTROCHEMISTRY 683
inability for the parameter s to take on values above 1 [23].
Jonscher’s law is performed for a wide range of the material
types—from disordered semiconductors to conducting polymers and
ion glasses. This qualitative characteristic of the universal response
is relevant to material morphology and spatial structure of the con-
duction network. In our case, the parameter s was 1.340.02 and
1.370.02 for S1-3 and S1-3/carbon materials, respectively.
A model of electric-charge transfer in the disordered matter
based on the distribution of the length of accessible conduction
paths with power exponent s1 larger was proposed in [24]. For
carbon-containing composite, dc-conductivity dc have been in-
creased to (6.10.8)10
7 Smm
1 from (1.90.6)10
6 Smm
1 for
initial S1-3 material. Average hopping frequency h of charge carri-
ers was increased from (3.70.4)103 to (5.11.8)103 Hz. In possi-
ble qualitative model, composite material is that of a grid of ran-
dom oriented chains of various lengths that consists of LiFePO4
particles interconnected by carbon bridges with conformational dis-
a b
Fig. 6. TEM picture of S2 system samples.
Fig. 7. Mössbauer spectra of S1-3/carbon sample.
684 V. O. KOTSYUBYNSKY, B. K. OSTAFIYCHUK, R. P. LISOVSKY et al.
order. Electronic transport in olivine LiFePO4 is caused by polaron
hopping. Thus, in carbon-containing composite, trapping was real-
ized both along chain (intrachain transfer) and over cross-connected
chains at the increasing of hops probability with grid density en-
larging.
Obtained discharge voltage profiles of the LiFePO4 cathode mate-
rial appear to be a typical voltage plateau (at about 3.4 V vs.
Li0/Li+) attributed to the coexistence of two isostructural similar
phases—LiFePO4 and FePO4 (Fig. 9). The carbon-containing material
exhibited a maximal capacity of about 140 mAh/g in the voltage
range of 2.2–4.0 V. In comparison, the initial S1-3 material under
the same conditions demonstrates a lower specific capacity of about
120 mAh/g. The plateau voltages for S1-3 and S1-3 /carbon are
Fig. 8. Frequency dependency of S1-3 and S1-3/carbon samples electrical
conductivity (solid lines represent fitting results).
Fig. 9. Discharge voltage profiles using the LiFePO4/LiBF4–-
butyrolactone/Li cell at room temperature for various cathode materials:
(a) S1-3/carbon, (b) S1-3, and (c) S2-1.
LiFePO4 NANOPARTICLES: SYNTHESIS, STRUCTURE, ELECTROCHEMISTRY 685
very close, but the width of the plateau for composite material is
larger. For S2-1 material, a smaller plateau is characterized by
some slope that is probably connected to diffuse distances increas-
ing during Li intercalation with the particles (agglomerates) sizes
growing. Indistinctive long ‘tails’ was observed on the voltage–
capacity curves during the last discharge step. For all cases, we
connect it with the relatively high inner resistance of the cathodes.
4. CONCLUSIONS
Nanosize LiFePO4 particles have been prepared by hydrothermal
route using ethylene glycol as morphology predicted surfactant. The
plate-like LiFePO4 particles with a minimal Fe3 ions content have
been obtained with 40 vol.% ethylene glycol relative content at
240C. Fe2P2O7 impurity phase formation at 77 vol.% ethylene gly-
col relative content is fixed. As determined, the changes of the re-
action medium temperature in a range of 200–240C have had no
impact on a phase state of the material and on the average size of
the primary prismatic particles (100–150 nm). The ordering charac-
ter of the agglomerates’ formation is observed at the temperature
of 200C. The frequencies dependences of conductivity for obtained
materials and LiFePO4/carbon composite have been analysed with
the using of electric-charge transfer in disordered matter formal-
ism. The electrochemical properties of the LiFePO4 cathodes depend
on the agglomerate sizes and the presence of carbon coating.
ACKNOWLEDGMENT
The publication contains the results of studies conducted under the
President’s of Ukraine grant for competitive projects of the State
Fund for Fundamental Research.
REFERENCES
1. A. Kumar, R. Thomas, N. K. Karan, J. J. Saavedra-Arias, M. K. Singh,
S. B. Majumder, and R. S. Katiyar, J. Nanotechnol., 2009, (2009): ID
176517; doi: 10.1155/2009/176517.
2. M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, J. Power
Sources, 195, No. 24: 7904 (2010).
3. G. T.-K. Fey, Y. G. Chen, and H.-M. Kao, J. Power Sources, 189, No. 1: 169
(2009).
4. G. K. P. Dathar, D. Sheppard, K. J. Stevenson, and G. Henkelman, Chem.
Mater., 23, No. 17: 4032 (2011).
5. C. R. Sides, F. Croce, V. Y. Young, C. R. Martin, and B. Scrosati,
Electrochem. Solid-State Lett., 8, No. 9: A484 (2005).
686 V. O. KOTSYUBYNSKY, B. K. OSTAFIYCHUK, R. P. LISOVSKY et al.
6. B. Kang and G. Ceder, Nature, 458: 190 (2009).
7. A. Yamada, S. C. Chung, and K. Hinokuma, J. Electrochem. Soc., 148,
No. 3: A224 (2001).
8. H. C. Kang, D. K. Jun, B. Jin, E. M. Jin, K. H. Park, H. B. Gu, and
K. W. Kim, J. Power Sources, 179, No. 1: 340 (2008).
9. S. Beninati, L. Damen, and M. Mastragostino, J. Electrochem. Soc., 194,
No. 2: 1094 (2009).
10. Z. Xu, L. Xu, Q. Lai, and X. Ji, Mater. Chem. Phys., 105, No. 1: 80 (2007).
11. B. Pei, H. Yao, W. Zhang, and Z. Yang, J. Electrochem. Soc., 220: 317
(2012).
12. V. Kotsyubynsky, A. S. A. H. Zamil, V. Moklyak, and R. Lisovsky,
2014 IEEE International Conference on Oxide Materials for Electronic
Engineering–OMEE 2014 (Lviv, 26–30 May, 2014), p. 100;
DOI: 10.1109/OMEE.2014.6912359.
13. J. Rodriguez-Carvajal, Newsletter, 26: 12 (2001).
14. V. A. Streltsov, E. L. Belokoneva, V. G. Tsirelson, and N. K. Hansen, Acta
Crystallogr. Sect. B: Struct. Sci., 49, No. 2: 147 (1993).
15. K. Hirose, T. Honma, Y. Doi, Y. Hinatsu, and T. Komatsu, Solid State
Commun., 146, No. 5: 273 (2008).
16. W. Kraus and G. Nolze, J. Appl. Crystallogr., 29, No. 3: 301 (1996).
17. K. Kanamura, S. Koizumi, and K. Dokko, J. Mater. Sci., 43, No. 7: 2138
(2008).
18. K. Zaghib, A. Mauger, F. Gendron, and C. M. Julien, Chem. Mater., 20,
No. 2: 462 (2007).
19. J. Chen and M. S. Whittingham, Electrochem. Commun., 8, No. 5: 855
(2006).
20. W. Porcher, P. Moreau, B. Lestriez, S. Jouanneau, F. Le Cras, and
D. Guyomard, Ionics, 14, No. 6: 583 (2008).
21. K. Bazzi, M. Nazri, V. M. Naik, V. K. Garg, A. C. Oliveira,
P. P. Vaishnava, and R. Naik, J. Power Sources, 306: 17 (2016).
22. J. K. Lee, H. W. Park, H. W. Choi, J. E. Kim, S. J. Kim, and Y. S. Yang,
J. Korean Phys. Soc., 47: S267 (2005).
23. B. Louati, M. Gargouri, K. Guidara, and T. Mhiri, J. Phys. Chem. Solids,
66, No. 5: 762 (2005).
24. A. N. Papathanassiou, I. Sakellis, and J. Grammatikakis, Appl. Phys. Lett.,
91, No. 12: 122911 (2007); doi: 10.1063/1.2779255.
https://doi.org/10.1109/OMEE.2014.6912359
http://dx.doi.org/10.1063/1.2779255
|