Методи побудови інваріантних множин у лінійних різницевих іграх утримання

Описано конструктивні методи побудови мінімальних та максимальних інваріантних множин у дискретному випадку. У диференціальній грі утримання розглянуто задачу знаходження інваріантних множин із застосуванням повного вимітання в новій постановці. Мета гравця-переслідувача — із будьякої точки одержано...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Остапенко, В.В., Терещенко, І.М.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2007
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/14083
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Методи побудови інваріантних множин у лінійних різницевих іграх утримання / В.В. Остапенко, І.М. Терещенко // Систем. дослідж. та інформ. технології. — 2007. — № 4. — С. 72-84. — Бібліогр.: 5 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Описано конструктивні методи побудови мінімальних та максимальних інваріантних множин у дискретному випадку. У диференціальній грі утримання розглянуто задачу знаходження інваріантних множин із застосуванням повного вимітання в новій постановці. Мета гравця-переслідувача — із будьякої точки одержаної множини утримати в ній траєкторію динамічної системи. Мета гравцявтікача — протилежна. Наведено приклад, на якому показана важливість різних умов повного вимітання, накладених на керування гравців. The constructive methods for building minimal and maximal invariant sets in the discrete case are described. The aim of the chasing player is to keep the trajectory of dynamic system in this set from any point within the acquired set. The aim of the escaping player is contrary. The given example shows the importance of different conditions of «a complete sweeping», superimposing on the players’ control. Описаны конструктивные методы построения минимальных и максимальных инвариантных множеств в дискретном случае. В дифференциальной игре удержания рассмотрена задача нахождения инвариантных множеств с применением полного выметания в новой постановке. Цель догоняющего игрока — из любой точки полученного множества удержать траекторию динамической системы в этом множестве. Цель убегающего игрока — противоположная. Приведен пример, в котором показана важность разных условий полного выметания, которые накладываются на управления игроков.
ISSN:1681–6048