On a model semilinear elliptic equation in the plane

Assume that Ω is a regular domain in the complex plane C and A(z) is symmetric 2 × 2 matrix with measurable entries, det A = 1 and such that 1/K|ξ|² ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. We study the blow-up problem for a model semilinear equation div (A(z)∇u) = e^u in Ω and show that the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2016
Hauptverfasser: Gutlyanskii, V.Y., Nesmelova, O.V., Ryazanov, V.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/140893
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On a model semilinear elliptic equation in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2016. — Т. 13, № 1. — С. 91-105. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-140893
record_format dspace
spelling Gutlyanskii, V.Y.
Nesmelova, O.V.
Ryazanov, V.I.
2018-07-17T17:51:44Z
2018-07-17T17:51:44Z
2016
On a model semilinear elliptic equation in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2016. — Т. 13, № 1. — С. 91-105. — Бібліогр.: 18 назв. — англ.
1810-3200
2010 MSC: 30C62, 35J61
https://nasplib.isofts.kiev.ua/handle/123456789/140893
Assume that Ω is a regular domain in the complex plane C and A(z) is symmetric 2 × 2 matrix with measurable entries, det A = 1 and such that 1/K|ξ|² ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. We study the blow-up problem for a model semilinear equation div (A(z)∇u) = e^u in Ω and show that the well-known Liouville–Bieberbach function solves the problem under an appropriate choice of the matrix A(z). The proof is based on the fact that every regular solution u can be expressed as u(z) = T(ω(z)) where ω : Ω → G stands for quasiconformal homeomorphism generated by the matrix A(z) and T is a solution of the semilinear weihted Bieberbach equation ∆T = m(w)e^T in G. Here the weight m(w) is the Jacobian determinant of the inverse mapping ω⁻¹(w).
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
On a model semilinear elliptic equation in the plane
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On a model semilinear elliptic equation in the plane
spellingShingle On a model semilinear elliptic equation in the plane
Gutlyanskii, V.Y.
Nesmelova, O.V.
Ryazanov, V.I.
title_short On a model semilinear elliptic equation in the plane
title_full On a model semilinear elliptic equation in the plane
title_fullStr On a model semilinear elliptic equation in the plane
title_full_unstemmed On a model semilinear elliptic equation in the plane
title_sort on a model semilinear elliptic equation in the plane
author Gutlyanskii, V.Y.
Nesmelova, O.V.
Ryazanov, V.I.
author_facet Gutlyanskii, V.Y.
Nesmelova, O.V.
Ryazanov, V.I.
publishDate 2016
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description Assume that Ω is a regular domain in the complex plane C and A(z) is symmetric 2 × 2 matrix with measurable entries, det A = 1 and such that 1/K|ξ|² ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. We study the blow-up problem for a model semilinear equation div (A(z)∇u) = e^u in Ω and show that the well-known Liouville–Bieberbach function solves the problem under an appropriate choice of the matrix A(z). The proof is based on the fact that every regular solution u can be expressed as u(z) = T(ω(z)) where ω : Ω → G stands for quasiconformal homeomorphism generated by the matrix A(z) and T is a solution of the semilinear weihted Bieberbach equation ∆T = m(w)e^T in G. Here the weight m(w) is the Jacobian determinant of the inverse mapping ω⁻¹(w).
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/140893
citation_txt On a model semilinear elliptic equation in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2016. — Т. 13, № 1. — С. 91-105. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT gutlyanskiivy onamodelsemilinearellipticequationintheplane
AT nesmelovaov onamodelsemilinearellipticequationintheplane
AT ryazanovvi onamodelsemilinearellipticequationintheplane
first_indexed 2025-12-07T16:10:15Z
last_indexed 2025-12-07T16:10:15Z
_version_ 1850866469739429888