Задача трех тел для жидкого эллипсоида и двух однородных твердых шаров

Получены уравнения движения для задачи о движении трех взаимно притягивающихся тел, одно из которых – жидкий эллипсоид переменной вязкости, совершающий однородное вихревое движение, а два других – твердые однородные шары. Закон изменения стратифицированной вязкости выбран так, чтобы обеспечить однор...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Механика твердого тела
Дата:2017
Автори: Андрюхин, А.И., Судаков, С.Н.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/140942
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Задача трех тел для жидкого эллипсоида и двух однородных твердых шаров / А.И. Андрюхин, С.Н. Судаков // Механика твердого тела: Межвед. сб. науч. тр. — 2017. — Вип 47. — С. 101-108. — Бібліогр.: 9 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Получены уравнения движения для задачи о движении трех взаимно притягивающихся тел, одно из которых – жидкий эллипсоид переменной вязкости, совершающий однородное вихревое движение, а два других – твердые однородные шары. Закон изменения стратифицированной вязкости выбран так, чтобы обеспечить однородное вихревое движение жидкости. В качестве примера с помощью метода Рунге–Кутта сделан расчет движения для задачи с массово-геометрическими параметрами системы Земля–Луна–Солнце. The problem of three gravitating bodies, one of which is a liquid ellipsoid and two others are rigid homogeneous spheres, is the subject of investigation in the paper. The motion of the liquid ellipsoid is assumed to be the homogeneous vortex flow, and this liquid has a special stratified distribution of viscosity that makes possible such motion. The equations of motion of this system are obtained, and they are solved for example by Runge–Kutta method for the case of the system with mass–geometric parameters of the Earth–Moon–Sun system.
ISSN:0321-1975