Метод Ньютона для неявной схемы численного интегрирования уравнений газовой динамики

Для нестационарной системы уравнений Эйлера построена неявная итерационная схема. Пространственные производные исходных уравнений аппроксимируются полностью неявно, а производные по времени приближаются односторонней трехточечной разностью. Нелинейная система алгебраических уравнений решается методо...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Проблемы машиностроения
Datum:2010
Hauptverfasser: Ершов, С.В., Деревянко, А.И., Гризун, М.Н.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інстиут проблем машинобудування ім. А.М. Підгорного НАН України 2010
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/141841
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Метод Ньютона для неявной схемы численного интегрирования уравнений газовой динамики / С.В. Ершов, А.И. Деревянко, М.Н. Гризун // Проблемы машиностроения. — 2010. — Т. 13, № 5. — С. 39-48. — Бібліогр.: 16 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Для нестационарной системы уравнений Эйлера построена неявная итерационная схема. Пространственные производные исходных уравнений аппроксимируются полностью неявно, а производные по времени приближаются односторонней трехточечной разностью. Нелинейная система алгебраических уравнений решается методом Ньютона. Рассмотрены вопросы аппроксимации и устойчивости неявной схемы и предложена ее модификация, уменьшающая численные осцилляции решения. Приведены результаты численного эксперимента. Для нестаціонарної системи рівнянь Ейлера побудована неявна ітераційна схема. Просторові похідні вихідних рівнянь апроксимуються повністю неявно, а похідні за часом наближаються однобічною триточковою різницею. Нелінійна система алгебраїчних рівнянь розв’язується методом Ньютона. Розглянуто питання апроксимації та стійкості неявної схеми та запропоновано її модифікацію, яка зменшує чисельні осциляції розв’язку. Наведено результати чисельного експерименту. The iterative implicit scheme is constructed for unsteady Euler equations. Time derivatives of the governing equations are approximated by one-sided three-point differences, whereas spatial derivatives are approximated fully implicitly with a finite-volume approach, ENOreconstruction and the Gounod’s exact Riemann solver. The nonlinear system of the algebraic equations is solved by the Newton method. The implicit iterative scheme constructed here is devoid of errors of factorisation, linearisation and diagonalisation of implicit operator. Approximation and stability of the scheme are considered. To reduce unphysical numerical oscillations at large Courant numbers we suggest the scheme modification that uses choice of smooth stencil for time derivatives. The results of numerical experiment are presented.
ISSN:0131-2928