Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator

The simulation model of single-bit second-order sigma-delta modulator and analog-to-digital converter (ADC) based on this modulator is developed. The study of influence of all components parameters on integral nonlinearity of ADC is carried out by the model. As revealed, there are no influence of se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Технічна електродинаміка
Datum:2016
Hauptverfasser: Sun, Haimeng, Kochan, R., Kochan, O., Su, Jun
Format: Artikel
Sprache:English
Veröffentlicht: Інститут електродинаміки НАН України 2016
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/141976
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator / Haimeng Sun, R. Kochan, O. Kochan, Jun Su // Технічна електродинаміка. — 2016. — № 6. — С. 63-68. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-141976
record_format dspace
spelling Sun, Haimeng
Kochan, R.
Kochan, O.
Su, Jun
2018-09-19T14:30:07Z
2018-09-19T14:30:07Z
2016
Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator / Haimeng Sun, R. Kochan, O. Kochan, Jun Su // Технічна електродинаміка. — 2016. — № 6. — С. 63-68. — Бібліогр.: 16 назв. — англ.
1607-7970
https://nasplib.isofts.kiev.ua/handle/123456789/141976
621.317.7
The simulation model of single-bit second-order sigma-delta modulator and analog-to-digital converter (ADC) based on this modulator is developed. The study of influence of all components parameters on integral nonlinearity of ADC is carried out by the model. As revealed, there are no influence of second integrator nonlinearity on ADC nonlinearity.
Разработана имитационная модель однобитного сигма-дельта модулятора второго порядка и аналого-цифрового преобразователя (АЦП) на его базе. С использованием этой модели проведено исследование влияния параметров компонентов на интегральную нелинейность АЦП. Выявлено отсутствие влияния нелинейности второго интегратора на нелинейность АЦП.
Розроблено імітаційну модель однобітного сигма-дельта модулятора другого порядку та аналого-цифрового перетворювача на його базі. З використанням цієї моделі проведено дослідження впливу параметрів компонентів на інтегральну нелінійність АЦП. Виявлено відсутність впливу нелінійності другого інтегратора на нелінійність АЦП.
en
Інститут електродинаміки НАН України
Технічна електродинаміка
Інформаційно-вимірювальні системи в електроенергетиці
Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator
Интегральная нелинейность однобитного сигма-дельта модулятора второго порядка
Інтегральна нелінійність однобітного сигма-дельта модулятора другого порядку
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator
spellingShingle Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator
Sun, Haimeng
Kochan, R.
Kochan, O.
Su, Jun
Інформаційно-вимірювальні системи в електроенергетиці
title_short Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator
title_full Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator
title_fullStr Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator
title_full_unstemmed Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator
title_sort integral nonlinearity of second-order single-bit sigma-delta modulator
author Sun, Haimeng
Kochan, R.
Kochan, O.
Su, Jun
author_facet Sun, Haimeng
Kochan, R.
Kochan, O.
Su, Jun
topic Інформаційно-вимірювальні системи в електроенергетиці
topic_facet Інформаційно-вимірювальні системи в електроенергетиці
publishDate 2016
language English
container_title Технічна електродинаміка
publisher Інститут електродинаміки НАН України
format Article
title_alt Интегральная нелинейность однобитного сигма-дельта модулятора второго порядка
Інтегральна нелінійність однобітного сигма-дельта модулятора другого порядку
description The simulation model of single-bit second-order sigma-delta modulator and analog-to-digital converter (ADC) based on this modulator is developed. The study of influence of all components parameters on integral nonlinearity of ADC is carried out by the model. As revealed, there are no influence of second integrator nonlinearity on ADC nonlinearity. Разработана имитационная модель однобитного сигма-дельта модулятора второго порядка и аналого-цифрового преобразователя (АЦП) на его базе. С использованием этой модели проведено исследование влияния параметров компонентов на интегральную нелинейность АЦП. Выявлено отсутствие влияния нелинейности второго интегратора на нелинейность АЦП. Розроблено імітаційну модель однобітного сигма-дельта модулятора другого порядку та аналого-цифрового перетворювача на його базі. З використанням цієї моделі проведено дослідження впливу параметрів компонентів на інтегральну нелінійність АЦП. Виявлено відсутність впливу нелінійності другого інтегратора на нелінійність АЦП.
issn 1607-7970
url https://nasplib.isofts.kiev.ua/handle/123456789/141976
citation_txt Integral Nonlinearity of Second-Order Single-Bit Sigma-Delta Modulator / Haimeng Sun, R. Kochan, O. Kochan, Jun Su // Технічна електродинаміка. — 2016. — № 6. — С. 63-68. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT sunhaimeng integralnonlinearityofsecondordersinglebitsigmadeltamodulator
AT kochanr integralnonlinearityofsecondordersinglebitsigmadeltamodulator
AT kochano integralnonlinearityofsecondordersinglebitsigmadeltamodulator
AT sujun integralnonlinearityofsecondordersinglebitsigmadeltamodulator
AT sunhaimeng integralʹnaânelineinostʹodnobitnogosigmadelʹtamodulâtoravtorogoporâdka
AT kochanr integralʹnaânelineinostʹodnobitnogosigmadelʹtamodulâtoravtorogoporâdka
AT kochano integralʹnaânelineinostʹodnobitnogosigmadelʹtamodulâtoravtorogoporâdka
AT sujun integralʹnaânelineinostʹodnobitnogosigmadelʹtamodulâtoravtorogoporâdka
AT sunhaimeng íntegralʹnanelíníinístʹodnobítnogosigmadelʹtamodulâtoradrugogoporâdku
AT kochanr íntegralʹnanelíníinístʹodnobítnogosigmadelʹtamodulâtoradrugogoporâdku
AT kochano íntegralʹnanelíníinístʹodnobítnogosigmadelʹtamodulâtoradrugogoporâdku
AT sujun íntegralʹnanelíníinístʹodnobítnogosigmadelʹtamodulâtoradrugogoporâdku
first_indexed 2025-11-26T19:14:30Z
last_indexed 2025-11-26T19:14:30Z
_version_ 1850770006779887616
fulltext ISSN 1607-7970. Техн. електродинаміка. 2016. № 6 63 ІНФОРМАЦІЙНО-ВИМІРЮВАЛЬНІ СИСТЕМИ В ЕЛЕКТРОЕНЕРГЕТИЦІ УДК 621.317.7 INTEGRAL NONLINEARITY OF SECOND-ORDER SINGLE-BIT SIGMA-DELTA MODULATOR Sun Haimeng1, R. Kochan2, O. Kochan2, Su Jun3 1 − Jimei University Chengyi College, 185 Yinjiang Road, 361021, XiaMen, China, 2 − Lviv Polytechnic National University, 12 Bandera str., Lviv, 79013, Ukraine. E-mail: kochan.roman@gmail.com 3 − Hubei University of Technology, Wuhan, 430068, China. The simulation model of single-bit second-order sigma-delta modulator and analog-to-digital converter (ADC) based on this modulator is developed. The study of influence of all components parameters on integral nonlinearity of ADC is carried out by the model. As revealed, there are no influence of second integrator nonlinearity on ADC nonlinearity. References 16, figures 9, table 1. Key words: sigma-Delta Modulator, Integral Nonlinearity, Error Correction. Introduction. Wide implementation of processors and digital signal processing algorithms in data acquisition and measurement systems brings to that analog-to-digital converters (ADC) became the necessary component of such systems. The metrology characteristics of systems of electrical quantities measurement are mainly defined by metrology characteristics of used ADCs. Therefore, improvement of metrology characteristics of ADCs is an actual task and it can give improvement of the accuracy of measurement results. The segment of precision ADC is filled by the converters based on sigma-delta modulators (SDM). Such ADCs are in the line of leading companies and are very popular on the market [1, 2]. Their high accuracy is based on implementation of accuracy improvement methods – null setting and calibration using reference voltage source. These methods provide correction of additive and multiplicative components of ADC’s error. The residual error of such ADC is mainly defined by nonlinearity of ADC’s conversion function (CF). Its level is significant and potentially we can decrease it. For example, 24-bit ADC of AD7714 type has integral nonlinearity not more than 15 ppm [3], and it corresponds only to 16-th bit. At the same time its effective resolution is up to 22 bit. So the nonlinearity of CF is 6 low signed “effective” bits or 8 least significant bits - LSB (taking into consideration noise level). Decreasing of ADC’s nonlinearity provides smoothing of ADC’s CF and can provide design accurate model of measured object [4, 5] or process [6, 7]. Therefore it is actual to investigate the form of ADC’s nonlinearity. The complexity of ADC’s nonlinearity correction is associated with its dualistic character: nonlinearity is systematic for each ADC and random for the set of single type ADC. Besides the parameters of nonlinearity approximation function depend of the operation mode of ADC. Therefore, the single determination of this function, for example, after manufacturing, and further correction do not provide significant accuracy improvement of conversion results. The set of methods is developed. They provide precision identification of ADC’s CF in the set of testing points [8]. The number of generated testing points is beginning from one up to some dozen per range depending on the complexity of the circuit and processing algorithm. However the implementation of these methods for correction of nonlinear error of ADC demands forming of interpolation curve for whole range. The interpolation function selection demands investigation of its character. The nonlinearity of sigma-delta ADC’s CF is defined by nonlinearity of forward signal channel [9, 10] and the purposeful selecting of interpolation function for nonlinearity correction demands study of the influence of integrator nonlinearity on nonlinearity of SDM and ADC based on SDM. So, the objective of the presented work is to investigate the character of ADC’s CF nonlinearity for adequate forming of interpolation curve. Development of simulation model. The exclusively experimental investigation of dependence of SDM’s nonlinearity on integrators’ nonlinearity could not be informative enough because of: • influence of the error of reference equipment; • complexity of precision owing to integrator nonlinearity. Therefore it is proposed to make investigation by simulation. The results obtained in [10, 11] suppose the synchronous variation of the parameters of all integrators. This is only one and not typical case for high order SDM because each integrator is separate component with own parameters and essential divergence between their time constants [11]. Therefore it necessary to investigate the sensitivity of SDM’s nonlinearity for the cases of independent integrators and their nonsynchronous combinations. The structure of single-bit second-order SDM is presented in fig.1. It consists of forward signal and backward signal channels. The first of them consists of two adders – , two integrators – ∫ and synchronous comparator – SC (which consists of asynchronous comparator and synchronous D-triger – TT). Backward signal channel consists of single-bit © Sun Haimeng, Kochan R., Kochan O., Su Jun, 2016 64 ISSN 1607-7970. Техн. електродинаміка. 2016. № 6 digital-to-analog converter – DAC, which is controlled by output code of SDM. Synchronization pulses for TT are generated by pulse generator – G. ∫∫ Fig. 1 The testing points of SDM (S1, S2, I1, I2, G, C, D) are marked in fig. 1. The dependences of voltage at these testing points on current are expressed by component equation of simulation model. The system of equations second-order SDM is ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) 1 1 1 1 0 2 1 2 1 2 0 2 2 , 1 , , 1 , 1, 0 , 0, 0 1, , 0,5 , 0, 0,5 , 1 , , 1 0 , , , 1, , 0, S X D t I S S I D t I S I C I G C G G X X X D X U t U t U t U t U t dt U t U t U t U t U t dt U t U t U t t k T k T U t t k T k T U t U t U t t N t N t t E N t U t E N t τ τ ⎧ = − ⎪ = = − = ⎧ >⎪= ⎨ ⎨ ≤⎪⎩ ⎧ ∈ ⎡ × + × ⎤⎪ ⎣ ⎦= ⎨ ∈ + × + ×⎪⎩ ⎧ = ∧ − Δ =⎪= ⎨ − Δ⎪⎩ ⎧ =⎪= ⎨ − =⎪⎩ ∫ ∫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ (1) where XU is the input voltage; XN is the output pulse sequence, which corresponds to input voltage XU ; 1 2 1 2, , , , , ,S S I I C G DU U U U U U U are the voltages of appropriate testing points of SDM; 1 2,τ τ are the time constants of appropriate integrator; T is the period of pulse generator; k is the integer value; 0→Δt is the time step of simulation; E is the output voltage of DAC. Taking into consideration (1) and the discreteness of output signal of SDM for the analog-to-digital conversion n is computed as ( )∑ + = ×= Ml li X TiNn  (2) where 2KM = is the maximum number of counts of ADC, which is defined by its resolution K ; 1t is the time of integrator “entry” into operating mode (after transient process of periodic waveform shaping); T tl 1 = is the number of output signals during time 1t , which are nonregistered because of nonfinishing of transient process. The input voltage of ADC is computed by expression 2 0,5X nU E M ⎛ ⎞′ = × −⎜ ⎟ ⎝ ⎠ . (3) The difference between input voltages defined by (1) and computed in (3) forms error, which is taken into consideration during analysis X XU U ′Δ = − . (4) The main parameters, which cause the integrator nonlinearity, are the limited frequency band and limited gain of amplifier. The significant effect of these parameters is provided by rather high operating frequency of integrators, which corresponds to operating frequency of pulse generator. This frequency, for example, for ADC of AD7714 type, is 1 or 2,5 MHz. Some works [9, 11] show the negligible influence of amplifiers limited frequency band on SDM nonlinearity. Therefore it is rational, first of all, to investigate the influence of amplifiers limited gain on ADCs nonlinearity. ISSN 1607-7970. Техн. електродинаміка. 2016. № 6 65 This influence we can simulate by linear variation of integrator’s time constant in equation (1) depending on input signal. It gives the parabolic approximation of integrator CF after integration. ( ) / / 0 / 1, 0 1 ; ; 1,2, 1, 0 I i i i i I i I i U s k U s i Uττ τ ⎧− >⎪= × + × × = =⎨ + <⎪⎩ (5) where 0iτ is the “initial” value of time constant of i -th integrator; s is the multiplier, which provides symmetric variation of time constant for positive and negative input signals; ikτ is the value for variation of time constant of i -th integrator; / I iU is the output signal of i -th integrator at previous simulation step. The developed simulation model is oriented on analysis in time domain and realizes the approach of asynchronous incrementing modeling with constant time step. According to [12] the range of SDM and ADC based on SDM is defined by output voltage of backward DAC, frequency of pulse generator and time constants of integrators. The parameters of several SDMs are computed. These parameters are presented in table. The variants of ADCs are given in the line with XMAXU . All SDMs in this table provide frequency of pulse generator of 100 kHz, DAC voltage is ± 5 V. Verification of simulation model. The verification of the developed simulation model is implemented by analysis of the ADC parameter based on linear model of SDM (1) and model of SDM with taking into account the integrator nonlinearity. The CF of ADC based on linear model of SDM is step function, approximated by segments of the line, which covers the origin of coordinates. The approximation error does not exceed the sensitivity of ADC. The integral nonlinearity of this model is equal to zero over all the range. The oscillograms of signals at all testing points for all SDMs from table for input voltages of 0 and XMAXU correspond to appropriate signals given in [13-15]. Some of these oscillograms is presented in fig. 2. The maximum value of all integrator output signal does not exceed voltage of DAC. It means that SDM operates correctly and in linear mode. Therefore we can consider adequate linear simulation model of SDM with parameters from table. The influence of integrator nonlinearity on output signal is described by (5). It gives distortion of all SDM’s signals in comparison with linear model. Therefore it is impossible to see the influence of nonlinearity by subtraction the signals in appropriate time. The example of SDM’s signals with nonlinear integrators is presented in fig. 3. These signals are for the identical conditions and time to the signals presented in fig. 2. As seen, these signals are significant different. The nonlinearity of the first integrator can be seen by plotting imagining straight line through two extremums at the ends of segments of polyline, which indicates this integrator output signal. The plot of the first integrator nonlinearity is presented in fig 4. This line is the segment of parabola and it corresponds to data in [16]. Therefore the simulation of integrator nonlinearity, at least for the first integrator, is adequate and correct. The analogical detection of the second integrator nonlinearity is impossible because of nonlinear character of output signal with unknown parameters even for linear model of SDM. Therefore, the influence of integrator nonlinearity on statistical parameters of SDM output signal is analyzed as following. SDM output signals with all linear integrators and one nonlinear integrator are compared. The distortion level of SDM with nonlinear first integrator for SDMs from table depending on input voltage is presented in fig. 5. The nonlinearity of the first integrator is equal to 0,1 %. Generally the nonlinearity of 0,1 % of the first integrator gives 5…50 % distortion of SDM output signal. The distortion level of SDM with nonlinear second integrator for the same SDMs is presented in fig. 6. In this case, all curves are random but total distortion level is less than in the case of nonlinear first integrator. Generally the nonlinearity 0,1 % of the second integrator gives 1,6…45 % distortion of SDM output signal. The distortion level caused by nonlinearity of the second integrator is 1,1 … 3 times less than distortion level caused by nonlinearity of the first one. We explain this by longer way of distorted signal of the first integrator in comparison with the second one. The trend of all curves presented in fig. 6 is declined. We explain this by decreasing the frequency of integrator output signals in the case of increasing input voltage. It gives the longer sequence of stable comparator output signal and decreasing of total number of comparator switchings. Therefore the delay of comparator output signal has less influence on conversion result. The random character of curves we can explain by close loop of SDM structure and the great step of input voltage simulation. The presented results of developed simulation model confirm its simplicity, adequacy and informativity. Therefore, we can use this model to study the properties of second-order SDM. Investigation of Integrator Nonlinearity influence on SDM Nonlinearity. The analysis of integrator nonlinearity influence and integral nonlinearity of ADC based on SDM is realized by computation of the absolute error of conversion results using (4). The investigation is carried out for all SDMs presented in table. The level of simulated integrator nonlinearity is 0,01…10 %. The dependence of ADC integral nonlinearity for different SDMs is presented in fig 7. These curves are obtained for first integrator nonlinearity of 0,1 %. The proportional curves are obtained for other levels of this integrator nonlinearity. The dependence of maximum nonlinearity of SDM on first integrator nonlinearity levels is presented in fig. 8. XMAXU 2,5 3 3,5 4 4,5 1 1 τ 4103.3 × 4104.2 × 4107.1 × 4101.1 × 3102.5 × 2 1 τ 4105 × 66 ISSN 1607-7970. Техн. електродинаміка. 2016. № 6 -4,0 -3,0 -2,0 -1,0 0,0 1,0 2,0 3,0 10 ,0 00 00 10 ,0 00 01 10 ,0 00 01 10 ,0 00 02 10 ,0 00 03 10 ,0 00 04 10 ,0 00 04 10 ,0 00 05 10 ,0 00 06 10 ,0 00 06 10 ,0 00 07 10 ,0 00 08 10 ,0 00 08 10 ,0 00 09 10 ,0 00 10 10 ,0 00 11 10 ,0 00 11 10 ,0 00 12 10 ,0 00 13 10 ,0 00 13 10 ,0 00 14 10 ,0 00 15 Time, S Vo lta ge , V -3,0 -2,0 -1,0 0,0 1,0 2,0 3,0 4,0 5,0 10 ,0 00 00 10 ,0 00 01 10 ,0 00 02 10 ,0 00 02 10 ,0 00 03 10 ,0 00 04 10 ,0 00 05 10 ,0 00 05 10 ,0 00 06 10 ,0 00 07 10 ,0 00 08 10 ,0 00 08 10 ,0 00 09 10 ,0 00 10 10 ,0 00 11 10 ,0 00 11 10 ,0 00 12 10 ,0 00 13 10 ,0 00 14 10 ,0 00 14 Time, S Vo lta ge , V 0 В; 2,5 ВX XMAXU U= = 2,5ВX XMAXU U= = -3,0 -2,0 -1,0 0,0 1,0 2,0 3,0 10 ,0 00 00 10 ,0 00 01 10 ,0 00 02 10 ,0 00 02 10 ,0 00 03 10 ,0 00 04 10 ,0 00 05 10 ,0 00 06 10 ,0 00 06 10 ,0 00 07 10 ,0 00 08 10 ,0 00 09 10 ,0 00 10 10 ,0 00 10 10 ,0 00 11 10 ,0 00 12 10 ,0 00 13 10 ,0 00 14 10 ,0 00 14 Time, S Vo lta ge , V -1,0 0,0 1,0 2,0 3,0 4,0 5,0 10 ,0 00 00 10 ,0 00 01 10 ,0 00 02 10 ,0 00 02 10 ,0 00 03 10 ,0 00 04 10 ,0 00 05 10 ,0 00 06 10 ,0 00 06 10 ,0 00 07 10 ,0 00 08 10 ,0 00 09 10 ,0 00 10 10 ,0 00 10 10 ,0 00 11 10 ,0 00 12 10 ,0 00 13 10 ,0 00 14 10 ,0 00 14 Time, S Vo lta ge , V 0 В; 4 ВX XMAXU U= = 4 ВX XMAXU U= = Fig. 2 -2,0 -1,0 0,0 1,0 2,0 3,0 4,0 5,0 10 ,0 00 00 10 ,0 00 01 10 ,0 00 02 10 ,0 00 02 10 ,0 00 03 10 ,0 00 04 10 ,0 00 05 10 ,0 00 06 10 ,0 00 06 10 ,0 00 07 10 ,0 00 08 10 ,0 00 09 10 ,0 00 10 10 ,0 00 10 10 ,0 00 11 10 ,0 00 12 10 ,0 00 13 10 ,0 00 14 10 ,0 00 14 Time, S Vo lta ge , V 0,00 0,05 0,10 0,15 0,20 0,25 1,19 1,31 1,43 1,56 1,68 1,80 1,93 2,05 2,18 2,30 2,42 1-st integrator's voltage, V N on lin ea rit y, m V Fig. 3 2,5 В; 2,5 ВX XMAXU U= = Fig. 4 0 10 20 30 40 50 60 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 Voltage, V D is to rti on le ve l, % 4,5 4 3,5 3 2,5 0 5 10 15 20 25 30 35 40 45 50 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 Voltage, V D is to rt io n le ve l,% 4,5 4 3,5 3 2,5 Fig. 5 Fig. 6 -50 0 50 100 150 200 250 300 350 400 0,0 0,4 0,7 1,1 1,4 1,8 2,1 2,5 2,8 3,2 3,5 3,9 4,2 Input voltage, V N on lin ea rit y, u V . 1,E-05 1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 0,01 0,03 0,10 0,30 1,00 3,00 10,00 Integrator's nonlinearity, % N on lin ea rit y, V Uxmax=4,5 V Uxmax=4,0 V Uxmax=3,5 V Uxmax=3,0 V Uxmax=2,5 V Fig. 7 Fig. 8 ISSN 1607-7970. Техн. електродинаміка. 2016. № 6 67 Taking into consideration curves presented in fig. 8 we can compute the nonlinearity rejection factor using the expression 1 100% UI NL NL K δΔ = Δ , where 1UIΔ is the peak-to-peak of first integrator output signal, NLδ is the relative nonlinearity of integrator, NLΔ is the nonlinearity of SDM. The plots of nonlinearity rejection factor for nonlinear first integrator are presented in fig. 9. As shown, this factor is approximately constant for nonlinearity more than 0,03 %. The value of the rejection factor is equal to 8…10 and SDMs with less range provide less values of rejection factor. The nonlinearity level less than 0,03 % corresponds to removable value of rejection factor. It could be explained by resolution of SDM model. 0 2 4 6 8 10 12 14 16 0,01 0,03 0,10 0,30 1,00 3,00 10,00 Integrator's nonlinearity, % R ej ec tio n Uxmax=4,5 V Uxmax=4,0 V Uxmax=3,5 V Uxmax=3,0 V Uxmax=2,5 V Fig. 9 The methodology of investigation of the second integrator nonlinearity influence on SDM nonlinearity is identical to the first integrator. Generally five SDMs presented in table I with seven nonlinearity levels from 0,01 to 10 % are studed. The input voltage step is 0,05 V. The SDM nonlinearity for all cases does not exceed the sensitivity of ADC based on appropriate SDM. Therefore the nonlinearity rejection factor of second integrator nonlinearity is more than 5000 (ratio of maximum nonlinearity of integrator to sensitivity of SDM). So the influence of second integrator nonlinearity on SDM nonlinearity is negligible small in comparison with the influence of the first integrator’s nonlinearity. Conclusion. The developed simulation model of single-bit second-order SDM provides independent simulation of all integrators by nonlinear submodels. This model is used to investigate the influence of each integrator nonlinearity on integral nonlinearity of ADC based on this SDM. The results give a possibility to conclude the following: • the first integrator nonlinearity has a complex character of influence on ADC integral nonlinearity; • the level of nonlinearity of the second integrator at least 500 times less than the influence on ADC nonlinearity in comparison with influence of first integrator nonlinearity; • the maximal value of ADC integral nonlinearity is proportional to nonlinearity level of the first integrator; • the rejection factor of first integrator nonlinearity by ADC based on single-bit second-order SDM is from 8 to 10. ACKNOWLEDGMENT. THE Authors acknowledge the Ministry of Education and Science of Ukraine for support by Project No 0115U000446. 1. Fowler K. Part 7: analog-to-digital conversion in real-time systems // IEEE Instrumentation & Measurement Magazine. − 2003. − Vol. 6. − Issue 3. − Pp. 58-64. 2. Kester W. Which ADC Architecture Is Right for Your Application? // Analog Dialogue. – 2005. – Vol. 39. − No 2. − Pр. 11-19 (URL: http://www.analog.com/library/analogdialogue/archives/39-06/architecture.pdf). 3. 24-Bit Sigma-Delta, Signal Conditioning ADC with 2 Analog Input Channels - AD7714 Data Sheets (URL: http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7714/products/ product.html). 4. Glowacz A. Diagnostics of synchronous motor based on analysis of acoustic signals with the use of line spectral frequencies and K-nearest neighbor classifier // Archives of Acoustics. − Vol. 39 (2). − Pp. 189-194. 5. Glowacz A. Diagnostics of DC and induction motors based on the analysis of acoustic signals // Measurement Science Review. − 2014. − Vol. 14. − No 5. − Pp. 257-262. 6. Emets V., Rogowski J. Fourier transform computation algorithm with regularization // Przeglad Elektrotechniczny. − 2010. − R. 86. − No 1. − Pp. 175 – 177. 7. Emets V., Rogowski J. Iterative regularization method applied to reconstruction of 3D scattering geometry // Przeglad Elektrotechniczny. − 2012. − R. 88. − No 4. − Pp. 111 – 113. 8. Kochan R., Kochan O., Chyrka M., Jun S., Bykovyy P. Approaches of voltage divider development for metrology verification of ADC / Proc. of 7-th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2013), 12-14 September 2013, Berlin, Germany. − Pp. 70 – 75. 68 ISSN 1607-7970. Техн. електродинаміка. 2016. № 6 9. Su Jun, Kochan R.V., Kochan O.V. Nonlinearity of analog-to-digital converter based on second-order sigma-delta modulator // Tekhnichna Elektrodynamika. – 2014. − No 4. − Pp. 99 – 101. (Ukr) 10. Kochan R., Klym H. Simulation Model of Delta-Sigma Modulator / Proc. of X-th International Conference «Modern Problems of Radio Engineering, Telecommunications and Computer Science» TCSET’2010. February 23 – 27, 2010, Lviv-Slavske. − 339 p. 11.Kochan R. Influence of integrator’s parameters on nonlinearity of high-order sigma-delta modulator // Data Acquisition and Processing. − 2010. − Vol. 33(109). − Pp. 52 – 59. (Ukr) 12. Kochan R.. Linear mode operation of high-order single-bit Sigma-Delta Modulator // Computational Problems of Electrical Engineering. – 2012. − Vol. 2. − No 1. − Pp. 65 − 68. 13. Analog-Digital Conversion / Walt Kester., Analog Devices Publisher, 2004. – 1138 p. 14. Domenico Luca Carnì, Domenico Grimaldi. State of Art on the Tests for ΣΔ ADC / 15th IMECO TC4 Symposium and 12th Workshop on ADC Modelling and Testing, September 19-21, 2007, Iaşi, Romania. 15. Shahov E. ΣΔ-ADC: processes of oversampling, noise shaping and decimation // Sensors and Systems. – 2006. – No 11. – Pp. 50–57. (Rus) 16. Marshe Zh. Operational Amplifiers and Their Applications. – Leningrad: Energiia, 1974. – 216 p. (Rus) УДК 621.317.7 ИНТЕГРАЛЬНАЯ НЕЛИНЕЙНОСТЬ ОДНОБИТНОГО СИГМА-ДЕЛЬТА МОДУЛЯТОРА ВТОРОГО ПОРЯДКА Сун Хайменг1, Р. Кочан2, О. Кочан2, Су Джун3 1 − Колледж Ченгуй Университета Жимей, ул. Юинжианг 185, Ксиамен, 361021, Китай, 2 − Национальный университет «Львовская политехника», ул. С. Бандеры, 12, Львов, 79013, Украина, E-mail: kochan.roman@gmail.com 3 − Хубейский технический университет, Вухань, 430068, Китай. Разработана имитационная модель однобитного сигма-дельта модулятора второго порядка и аналого-циф- рового преобразователя (АЦП) на его базе. С использованием этой модели проведено исследование влияния параметров компонентов на интегральную нелинейность АЦП. Выявлено отсутствие влияния нелинейности второго интегратора на нелинейность АЦП. Библ. 16, рис. 9, табл. 1. Ключевые слова: сигма-дельта модулятор, интегральная нелинейность, коррекция погрешности. УДК 621.317.7 ІНТЕГРАЛЬНА НЕЛІНІЙНІСТЬ ОДНОБІТНОГО СИГМА-ДЕЛЬТА МОДУЛЯТОРА ДРУГОГО ПОРЯДКУ Сун Хаіменг1, Р.Кочан2, О.Кочан2, Су Джун3 1 − Коледж Ченгуй Університету Жімей, вул. Юінжиганг, 185, Ксіамен, 361021, Китай, 2 − Національний університет «Львівська політехніка», вул. С. Бандери, 12, Львів, 79013, Україна, E-mail: kochan.roman@gmail.com 3 − Хубейський технічний університет, Вухань, 430068, Китай. Розроблено імітаційну модель однобітного сигма-дельта модулятора другого порядку та аналого-цифрового перетворювача на його базі. З використанням цієї моделі проведено дослідження впливу параметрів ком- понентів на інтегральну нелінійність АЦП. Виявлено відсутність впливу нелінійності другого інтегратора на нелінійність АЦП. Бібл. 16, рис. 9, табл. 1. Ключові слова: сигма-дельта модулятор, інтегральна нелінійність, корекція похибки. Надійшла 05.02.2016 Остаточний варіант 15.09.2016