Comparative Evaluation of Convergence's Speed of Learning Algorithms for Linear Classifiers by Statistical Experiments Method

The purpose of the article is to investigate the properties of the Rosenblatt and Kozinets learning algorithms on the basis of statistical experiment by the Monte Carlo method. Methods. Two algorithms for linear classifiers learning have been studied: Rosenblatt and Kozinets. A number of researches...

Full description

Saved in:
Bibliographic Details
Published in:Кибернетика и вычислительная техника
Date:2018
Main Authors: Fainzilberg, L.S., Matushevych, N.A.
Format: Article
Language:English
Published: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України 2018
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/142089
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Comparative Evaluation of Convergence's Speed of Learning Algorithms for Linear Classifiers by Statistical Experiments Method / L.S. Fainzilberg, N.A. Matushevych // Кибернетика и .вычислительная техника. — 2018. — № 2 (192). — С. 5-22. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine