Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации

A neuro-controller synthesis is performed on the basis of an autoregressive moving average model to solve a control problem for a light-armored vehicle armament guidance and stabilization system. An algorithm of NARMA-L2 controller synthesis for a given control object is described. NARMA-L2 controll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Електротехніка і електромеханіка
Datum:2011
Hauptverfasser: Кузнецов, Б.И., Василец, Т.Е., Варфоломеев, А.А.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут технічних проблем магнетизму НАН України 2011
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/143554
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации / Б.И. Кузнецов, Т.Е. Василец, A.A Варфоломеев // Електротехніка і електромеханіка. — 2011. — № 4. — С. 41-46. — Бібліогр.: 7 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-143554
record_format dspace
spelling Кузнецов, Б.И.
Василец, Т.Е.
Варфоломеев, А.А.
2018-11-05T18:09:06Z
2018-11-05T18:09:06Z
2011
Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации / Б.И. Кузнецов, Т.Е. Василец, A.A Варфоломеев // Електротехніка і електромеханіка. — 2011. — № 4. — С. 41-46. — Бібліогр.: 7 назв. — рос.
2074-272X
https://nasplib.isofts.kiev.ua/handle/123456789/143554
681.5.01.23
A neuro-controller synthesis is performed on the basis of an autoregressive moving average model to solve a control problem for a light-armored vehicle armament guidance and stabilization system. An algorithm of NARMA-L2 controller synthesis for a given control object is described. NARMA-L2 controller parameters that significantly affect the control quality are ascertained; the parameters values that provide the system’s preset performance quality ratings are specified. Computer simulation of the system is made.
ru
Інститут технічних проблем магнетизму НАН України
Електротехніка і електромеханіка
Електричні машини та апарати
Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации
NARMA-L2 controller synthesis for a guidance and stabilization system
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации
spellingShingle Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации
Кузнецов, Б.И.
Василец, Т.Е.
Варфоломеев, А.А.
Електричні машини та апарати
title_short Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации
title_full Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации
title_fullStr Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации
title_full_unstemmed Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации
title_sort синтез нейросетевого регулятора narma-l2 controller для системы наведения и стабилизации
author Кузнецов, Б.И.
Василец, Т.Е.
Варфоломеев, А.А.
author_facet Кузнецов, Б.И.
Василец, Т.Е.
Варфоломеев, А.А.
topic Електричні машини та апарати
topic_facet Електричні машини та апарати
publishDate 2011
language Russian
container_title Електротехніка і електромеханіка
publisher Інститут технічних проблем магнетизму НАН України
format Article
title_alt NARMA-L2 controller synthesis for a guidance and stabilization system
description A neuro-controller synthesis is performed on the basis of an autoregressive moving average model to solve a control problem for a light-armored vehicle armament guidance and stabilization system. An algorithm of NARMA-L2 controller synthesis for a given control object is described. NARMA-L2 controller parameters that significantly affect the control quality are ascertained; the parameters values that provide the system’s preset performance quality ratings are specified. Computer simulation of the system is made.
issn 2074-272X
url https://nasplib.isofts.kiev.ua/handle/123456789/143554
citation_txt Синтез нейросетевого регулятора NARMA-L2 CONTROLLER для системы наведения и стабилизации / Б.И. Кузнецов, Т.Е. Василец, A.A Варфоломеев // Електротехніка і електромеханіка. — 2011. — № 4. — С. 41-46. — Бібліогр.: 7 назв. — рос.
work_keys_str_mv AT kuznecovbi sintezneirosetevogoregulâtoranarmal2controllerdlâsistemynavedeniâistabilizacii
AT vasilecte sintezneirosetevogoregulâtoranarmal2controllerdlâsistemynavedeniâistabilizacii
AT varfolomeevaa sintezneirosetevogoregulâtoranarmal2controllerdlâsistemynavedeniâistabilizacii
AT kuznecovbi narmal2controllersynthesisforaguidanceandstabilizationsystem
AT vasilecte narmal2controllersynthesisforaguidanceandstabilizationsystem
AT varfolomeevaa narmal2controllersynthesisforaguidanceandstabilizationsystem
first_indexed 2025-11-26T15:26:46Z
last_indexed 2025-11-26T15:26:46Z
_version_ 1850626437626724352
fulltext ISSN 2074-272X. . 2011. 4 41 681.5.01.23 N RMA-L2 CONTROLLER . , . , . . RMA-L2 Controller . , - , - . . - . - N RMA-L2 Controller . , - , . . . - , - , . - - , - , . - - , - - . . - - . , - - , - , - . - , . " " - 1974 [1], 80- - . - - - , [2]. 90- - - . [3, 4]. - – - . , , - . . [5]. - - , - , - . - , . . N RMA-L2 Controller - - , Neural Network Toolbox MATLAB.MATLAB : NN Predictive Controller, - N RMA-L2 Controller Model Reference Controller. - [6], - - NN Predictive Controller, - . , . , , . , - . - N RMA-L2 Controller. 42 ISSN 2074-272X. . 2011. 4 N RMA-L2 Controller, - . N RMA-L2 Controller , - toolbox/nnet/ nncontrol SIMULINK: Nncontrolutil – , - SIMULINK; Sfunxy2 – - ; Nnident.m – , - ( - , Neural Network Toolbox MATLAB). . 1 - - , SIMULINK. - Subsystem N RMA – L2 Controller, Random Reference, . - , - Kp, Kd ( - - ), Derivative Saturation. [7]. f 1 s In Out Subsystem Random Reference1 Plant Output Reference Control Signal f g NARMA-L2 Control ler Kd Kp du/dt Derivative Saturation . 1. N RMA-L2 Controller : - . - , . N RMA-L2 Controller. - Plant Identification N RMA-L2, - . 2. , SIMULINK. - MATLAB nnident.m. . 2. - . : Size of Hidden Layer (N) – ; Sampling Interval ( t) – - - ; No. Delayed Plant Inputs (Ni) – - ; No. Delayed Plant Outputs (Nj) – - ; Normalize Training Data. - [0 1]. : Training samples (NB) – - ( ); Maximum Plant Input ( max) - - ; Minimum Plant Input ( min) – - ; Maximum Interval Value (sec) (tmax) – - ; Minimum Interval Value (sec) (tmin) – - ; Limit Output Data. , , 2 : Maximum Plant Output. ; Minimum Plant Output. ; Simulink Plant Model – Simulink , - ISSN 2074-272X. . 2011. 4 43 - . Browser - , , [7]. : Training Epochs – ; Training function – ; Use Current Weights – , - - ; Use Validation/Testing Training – , 25 % - . Simulink gensim (netn) . 3). , - , - ( . . 2): S = 8, - Ni = 3 - Nj = 4. - . Simulink , . 4. 12 lz{3,2}1 11 iz{1,1}2 10 lz{6,5} 9 lz{5,4} 8 lz{4,3} 7 lz{2,1} 6 a{2}1 5 a{6} 4 a{4}1 3 a{3}1 2 a{1}1 1 y{1}1 y{1} tansig1 tansig Input 1 p{1} purel in2 purel in1 purel in netsum4 netsum3 netsum2 netsum1 netsum w p z dotprod43 w p z dotprod42 w p z dotprod41 w p z dotprod40 w p z dotprod39 w p z dotprod38 w p z dotprod37 w p z dotprod36 w p z dotprod35 w p z dotprod34 w p z dotprod33 w p z dotprod32 w p z dotprod31 w p z dotprod30 w p z dotprod29 w p z dotprod28 w p z dotprod18 w p z dotprod17 w p z dotprod16 w p z dotprod15 bias b{6} bias b{4} bias b{3} bias b{2} bias b{1} a{5} a{4} a{3} a{2} a{1} p{1} y {1} Neural Network Mux Mux8 Mux Mux7 Mux Mux5 Mux Mux4 Mux Mux3 Mux Mux2 a{5} a{6} Layer 6 a{4} a{5} Layer 5 a{3} a{4} Layer 4 a{2} a{3} Layer 3 a{1} a{2} Layer 2 p{1} a{1} Layer 1 weight LW{6,5} weight LW{4,3} weight LW{3,2} weight LW{2,1} weights IW{6,5}(1,:)' weights IW{5,4}(1,:)' weights IW{4,3}(1,:)' weights IW{3,2}(8,:)' weights IW{3,2}(7,:)'1 weights IW{3,2}(6,:)'1 weights IW{3,2}(5,:)'1 weights IW{3,2}(4,:)'1 weights IW{3,2}(3,:)'1 weights IW{3,2}(2,:)'1 weights IW{3,2}(1,:)'1 weights IW{2,1}(1,:)' weights IW{1,1}(8,:)'1 weights IW{1,1}(7,:)'2 weights IW{1,1}(6,:)'2 weights IW{1,1}(5,:)'2 weights IW{1,1}(4,:)'2 weights IW{1,1}(3,:)'2 weights IW{1,1}(2,:)'2 weights IW{1,1}(1,:)'2 weight IW{1,1} TDL Delays 5 TDL Delays 4 TDL Delays 3 TDL Delays 2 TDL Delays 1 a{5} a{4} a{3} a{2} a{1} 12 ad{3,2}1 11 pd{1,1}2 10 ad{6,5} 9 ad{5,4} 8 ad{4,3} 7 ad{2,1} 6 a{1} 5 a{5} 4 a{3} 3 a{2} 2 p{1}2 1 p{1}1 . 3. , gensim (netn) . 4. netn N RMA-L2 , . . 1 6 . Nj y(k), y(k 1),…, y(k Nj + 1) ( - y(k), y(k 1), y(k 2), y(k 3), (Ni 1) u(k 1),…, u(k Ni + 1) ( u(k 1), u(k 2). 6 8 1 , , - . : - (tansig) – , - (purelin) – , , - . netn - : netn.numInputs=2; netn.numInputs=3; netn.inputs{2}.size=netn.inputs{1}.size; netn.inputs{2}.range=netn.inputs{1}.range; netn.inputs{3}.range=minmax(ptr{3,1}); netn.biasConnect(5:6)=0; netn.layers{5}.netInputFcn='netprod'; netn.inputConnect(3,2)=1; netn.inputConnect(5,3)=1; netn.layerConnect(6,2)=1; netn.layerConnect(3,2)=0. , - . 5. 3 6 1 . , , . u(k). - (purelin) - netprod, - - . y{1 }1 tan sig 1ta nsig In put 1 p{1 } pu rel in3 pu rel in2 p ure lin 1 pu rel in n etsum 6 n etsum4 n etsum3net su m2 n etsum1ne tsu m w p z do tp rod 9 w p z dot pro d8 w p z dot pro d7 w p z dot pro d6 w p z dot pro d5 w p z dot pro d4 w p z dot pro d3 w p z d otp rod 20 w p z dot pro d2 w p z do tprod1 9 w p z do tpr od1 8 w p z do tprod1 7 w p z do tprod 16 w p z do tprod1 5 w p z do tprod1 4 w p z do tprod1 3 w p z do tprod1 2 w p z do tprod1 1 w p z do tprod1 0 w p z dot pro d1 b ias b {6} b ias b {5} b ias b {4} b ias b {3} bia s b{2 }bia s b{1 } M ux Mux8 Mu x Mu x6 M ux Mu x5M ux Mu x4M ux Mu x3 M ux Mux2 we igh ts IW{6,5 }(1 ,:) ' we igh ts IW{5, 4}(1 ,:)'we igh ts IW{4, 3}(1 ,:)' we igh ts IW{ 3,2 }(8, :)'1 we igh ts IW{ 3,2 }(7, :)'2 we igh ts IW{ 3,2 }(6, :)'2 we igh ts IW{ 3,2 }(5, :)'2 we igh ts IW{ 3,2 }(4, :)'2 we igh ts IW{ 3,2 }(3, :)'2 we igh ts IW{ 3,2 }(2, :)'2 we igh ts IW{ 3,2 }(1, :)'2 weig hts IW{2 ,1}(1,: )' weig hts IW{1, 1}(8 ,:)'2 weig hts IW{1, 1}(7 ,:)'1 weig hts IW{1, 1}(6 ,:)'1 weig hts IW{1, 1}(5 ,:)'1 weig hts IW{1, 1}(4 ,:)'1 weig hts IW{1, 1}(3 ,:)'1 weig hts IW{1, 1}(2 ,:)'1 weig hts IW{1, 1}(1 ,:)'1 44 ISSN 2074-272X. . 2011. 4 , - .5, . 6. y{1} Input 3 p{3} Input 2 p{2} Input 1 p{1} p{1} p{2} p{3} y {1} Neural Network 1 y{1}1 a{5} a{4} a{3} a{2} a{1} a{2} a{5} a{6} Layer 6 p{3} a{4} a{5} Layer 5 a{3} a{4} Layer 4 p{2} a{3} Layer 3 a{1} a{2} Layer 2 p{1} a{1} Layer 1 a{5} a{4} a{3} a{2} a{1} 3 p{3}1 2 p{2}1 1 p{1}1 . 5. netn . 6. netn N RMA-L2 . - doubl , - . trainlm, . , - - . 7. . 8. , - . 8. IW{1,1}, IW{3,2}, IW{5,3}, LW{2,1}, LW{4,3}, LW{5,4}, LW{6,5}, LW{6,2} b{1}, b{2}, b{3}, b{4} N RMA – L2 Controller Simulink. Simulink , .9. K Matrix Gain : Matrix Gain IW1_1=netn.IW{1,1}; Matrix Gain1IW3_2=netn.IW{3,2}; Matrix Gain2 LW2_1=netn.LW{2,1}; Matrix Gain3 LW2_1=netn.LW{4,3}; Matrix Gain5 LW4_3=netn.LW{6,2}; Matrix Gain8 LW6_5*LW5_4*IW5_3=netn.LW{6,5}* *netn.LW{5,4}*netn.IW{5,3}. . 7. N RMA-L2 Controller y{1} tansi g1 tansig Input 3 p{3} Input 2 p{2} Input 1 p{1} purel in4 pureli n2 pureli n1 pureli n net sum5 netsum 3 netsum 2 netsum1 netsum netprod w p z dotprod8 w p z dotprod43 w p z dotprod42 w p z dotprod41 w p z dotprod40 w p z dotprod39 w p z dotprod38 w p z dotprod37 w p z dotprod36 w p z dotprod35 w p z dotprod34 w p z dotprod33 w p z dotprod32 w p z dotprod31 w p z dotprod30 w p z dotprod29 w p z dotprod28 w p z dotprod20 w p z dotprod19 w p z dotprod18 w p z dotprod17 w p z dotprod16 bi as b{4}bi as b{3} bi as b{2}bi as b{1} Mux M ux8 Mux Mux7 Mux M ux6 M ux Mux5 M ux Mux4 Mux M ux3Mux M ux2 M ux Mux1 weights IW{6, 5}(1,: )' wei ghts IW{6,2}(1,:) ' wei ghts IW{5,4}(1, :)' wei ghts IW{5, 3}(1, :)' wei ghts IW{4,3}(1,: )' wei ghts IW{3,2}(8, :)' wei ghts I W{3, 2}(7,: )'1 wei ghts I W{3, 2}(6,: )'1 wei ghts I W{3, 2}(5,: )'1 wei ghts I W{3, 2}(4,: )'1 wei ghts I W{3, 2}(3,: )'1 wei ghts I W{3, 2}(2,: )'1 wei ghts I W{3, 2}(1,: )'1 weight s IW{2,1}(1,:)' wei ghts IW{1, 1}(8,: )'1 wei ghts IW{1, 1}(7,: )'2 wei ghts IW{1, 1}(6,: )'2 wei ghts IW{1, 1}(5,: )'2 wei ghts IW{1, 1}(4,: )'2 wei ghts IW{1, 1}(3,: )'2 wei ghts IW{1, 1}(2,: )'2 wei ghts IW{1, 1}(1,: )'2 ISSN 2074-272X. . 2011. 4 45 . 8. RMA-L2 Controller Constant value Constant B1=netn.b{1}; B2=netn.b{2}; B3=netn.b{3}; B4=netn.b{4}; Discrete State Space , [6] NN Predictive Controller. N RMA-L2 Controller, NN Predictive Controller, - S. S = 8-14 , 10 4-10 5. 1 Control Signal tansig1 tansig purelin1 purelin + netsum3 + netsum2 + netsum1 + netsum Zero-Order Holdz 1 Unit Delay4 Switch3 Switch2 Switch1 Switch Sum Saturation1Product signal1 signal2 K*u Matrix Gain8 K*u Matrix Gain5 K*u Matrix Gain3 K*u Matrix Gain2 K*u Matrix Gain1 K*u Matrix Gain f(u) Fcn3 f(u) Fcn2 f(u) Fcn1 f(u) Fcn y(n)=Cx(n)+Du(n) x(n+1)=Ax(n)+Bu(n) Discrete State-Space4 -C- Constant7 B4 Constant6 B3 Constant5 -C- Constant4 -C- Constant3 -C- Constant2 B2 Constant1 B1 Constant 2 Plant Output 1 Reference . 9. N RMA-L2 NB - t, . - : NB = 10000, t = 0,001 c. t , . t NB , , , . - - , . - . - . - , – . . : tmin = 0,01 c, tmax = 0,1 c. Ni Nj Ni = 1-4, Nj = 2-5. N = 300, , 300-600. : S = 10, Ni = 1, Nj = 5; N = 300. , N RMA-L2 Controller - . 7 8. , 3,68 10 12, - 4 10 5. , , NN Predictive Controller, RMA-L2 Controller - . . 10 - - . , , - LW{6,5}, LW{5,4}, IW{5,3} 1-10 5, LW{6,2} 1-10 1 ( ). - , , Matrix Gain8 Matrix Gain5 ( . . 9). - , Product 1. - Control Signal +1 1 Saturation1 - Maximum Plant Input = 1 Minimum Plant Input = 1 ( . Plant Identification – NARMA-L2, .2)). , 0, +27 27 , . - 0,006 12 . 46 ISSN 2074-272X. . 2011. 4 0 0.5 1 1.5 2 0 0.1 0.2 0.3 0.4 0.5 0.6 t, c f, rad 1 2 ) 1- 2- 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 t, c Wm, c-1 ) 0 0.5 1 1.5 2 -30 -20 -10 0 10 20 30 t, c Ud, B ) . 10. N RMA – L2 Controller: ) – ; ) – ; ) – U RMA-L2 Controller - - - . Simulink MATLAB - - N RMA-L2 Controller - . N RMA-L2 Controller, - Neural Network Toolbox MATLAB. - , - , - , - . . 1. Werbos P. J. Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD Thesis, Harvard University, Cambridge, MA. – 1974. 2. Narendra K.S., Parthasarathy K. Identification and control of dynamical system using neural networks // IEEE Trans. Neu- ral Networks. – 1990. – Vol.1. – 1. – P. 4-27. 3. ., ., C.A. - // - . – 1999. – 5. – . 2-6. 4. - : ., ., ., ., . // ". – 2002. – 9. – . 47-52. 5. , . - . – : , 2002. – 317 . 6. ., ., . - . // - . – 2008. – 3. – . 27-32. 7. ., ., . - // . – 2008. – 2. – . 31-34. Bibliography (transliterated): 1. Werbos P. J. Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD Thesis, Harvard University, Cambridge, MA. - 1974. 2. Narendra K.S., Par- thasarathy K. Identification and control of dynamical system using neu- ral networks // IEEE Trans. Neural Networks. - 1990. - Vol.1. - 1. - P. 4-27. 3. Klepikov V.B., Mahotilo K.V., Sergeev C.A. Primenenie meto- dov nejronnyh setej i geneticheskih algoritmov v reshenii zadach uprav- leniya `elektroprivodami// `Elektrotehnika. - 1999. - 5. - S. 2-6. 4. Nejro-fazzi regulyator dlya `elektroprivodov s proskal'zyvaniem: Klepikov V.B., Klepikov A.V., Glebov O.Yu., Moiseenko P.L., Polyan- skaya I.S. // V snik NTU "HP ". - 2002. - 9. - S. 47-52. 5. Rudenko O.G, Bodyanskij E.V. Osnovy teorii iskusstvennyh nejronnyh setej. - Har'kov: TELETEH, 2002. - 317 s. 6. Kuznecov B.I., Vasilec T.E., Var- folomeev A.A. Sintez nejrokontrollera s predskazaniem dlya dvuhmass- ovoj `elektromehanicheskoj sistemy. // Elektrotehn ka elektrome- han ka. - 2008. - 3. - S. 27-32. 7. Kuznecov B.I., Vasilec T.E., Var- folomeev A.A. Razrabotka nejrosetevoj sistemy navedeniya i stabilizacii vooruzheniya legkobronirovannyh mashin // Elektrotehn ka elektromehan ka. - 2008. - 2. - S. 31-34. 22.02.2011 , ., ., , ., ., 61003, , . , 16 . (057) 733-79-59 , . , . . +197-39-54-34-42 Kuznetsov B.I., Vasilets T.E., Varfolomeev A.A. NARMA-L2 controller synthesis for a guidance and stabilization system. A neuro-controller synthesis is performed on the basis of an autoregressive moving average model to solve a control problem for a light-armored vehicle armament guidance and stabilization system. An algorithm of NARMA-L2 controller synthesis for a given control object is described. NARMA-L2 controller pa- rameters that significantly affect the control quality are ascer- tained; the parameters values that provide the system’s preset performance quality ratings are specified. Computer simulation of the system is made. Key words – neuro-controller, autoregressive moving average model, neural guidance and stabilization, NARMA-L2 controller control system, synthesis.