Алгебри загальних недетермінованих предикатів

Запропоновано та досліджено логіки загальних недетермінованих квазіарних предикатів – GND-предикатів. Такі предикати є узагальненням часткових неоднозначних предикатів реляційного типу. Основна увага приділена побудові композиційних алгебр GND-предикатів. Виділено різновиди GND-предикатів, показано...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Проблеми програмування
Дата:2018
Автори: Нікітченко, М.С., Шкільняк, О.С., Шкільняк, C.С.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут програмних систем НАН України 2018
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/144561
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Алгебри загальних недетермінованих предикатів / М.С. Нікітченко, О.С. Шкільняк, C.С. Шкільняк // Проблеми програмування. — 2018. — № 1. — С. 5-21. — Бібліогр.: 8 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Запропоновано та досліджено логіки загальних недетермінованих квазіарних предикатів – GND-предикатів. Такі предикати є узагальненням часткових неоднозначних предикатів реляційного типу. Основна увага приділена побудові композиційних алгебр GND-предикатів. Виділено різновиди GND-предикатів, показано їх зв'язок із 7-значними тотальними детермінованими предикатами. Виділено 7-елементну алгебру істиннісних значень цих предикатів, описано усі її підалгебри. Такі підалгебри індукують відповідні алгебри GND-предикатів. Описано мови чистих першопорядкових логік GND-предикатів та їх інтерпретації. Введено та досліджено відношення логічного G-наслідку. Предложены и исследованы новые программно-ориентированные логические формализмы – логики общих недетерминированных квазиарных предикатов, названных GND-предикатами. Эти предикаты являются обобщением частичных неоднозначных предикатов реляционного типа. Основное внимание уделено построению композиционных алгебр GND-предикатов. Выделены разновидности таких предикатов, описаны их композиции. GND-предикаты можно моделировать как 7-значные тотальные детерминированные – ТD7-предикаты. Выделена 7-элементная алгебра истинностных значений TD7-предикатов, описаны все ее подалгебры. Каждая такая подалгебра индуцирует соответствующую алгебру TD7-предикатов, которая далее индуцирует алгебру GND-предикатов. Это позволило выделить ряд важных композиционных алгебр общих недетерминированных предикатов. Описаны языки чистых первопорядковых логик GND-предикатов, их интерпретации. Введены отношения логического G-следствия и логической G-эквивалентности. Отношение логического G-следствия является монотонным, рефлексивным и транзитивным, для него выполняются свойства декомпозиции формул. На основе этих свойств для логик GND-предикатов планируется построение исчислений секвенциального типа. Предложены и исследованы новые программно-ориентированные логические формализмы – логики общих недетерминированных квазиарных предикатов, названных GND-предикатами. Эти предикаты являются обобщением частичных неоднозначных предикатов реляционного типа. Основное внимание уделено построению композиционных алгебр GND-предикатов. Выделены разновидности таких предикатов, описаны их композиции. GND-предикаты можно моделировать как 7-значные тотальные детерминированные – ТD7-предикаты. Выделена 7-элементная алгебра истинностных значений TD7-предикатов, описаны все ее подалгебры. Каждая такая подалгебра индуцирует соответствующую алгебру TD7-предикатов, которая далее индуцирует алгебру GND-предикатов. Это позволило выделить ряд важных композиционных алгебр общих недетерминированных предикатов. Описаны языки чистых первопорядковых логик GND-предикатов, их интерпретации. Введены отношения логического G-следствия и логической G-эквивалентности. Отношение логического G-следствия является монотонным, рефлексивным и транзитивным, для него выполняются свойства декомпозиции формул. На основе этих свойств для логик GND-предикатов планируется построение исчислений секвенциального типа.
ISSN:1727-4907