Алгебри загальних недетермінованих предикатів
Запропоновано та досліджено логіки загальних недетермінованих квазіарних предикатів – GND-предикатів. Такі предикати є узагальненням часткових неоднозначних предикатів реляційного типу. Основна увага приділена побудові композиційних алгебр GND-предикатів. Виділено різновиди GND-предикатів, показано...
Saved in:
| Published in: | Проблеми програмування |
|---|---|
| Date: | 2018 |
| Main Authors: | , , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Інститут програмних систем НАН України
2018
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/144561 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Алгебри загальних недетермінованих предикатів / М.С. Нікітченко, О.С. Шкільняк, C.С. Шкільняк // Проблеми програмування. — 2018. — № 1. — С. 5-21. — Бібліогр.: 8 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-144561 |
|---|---|
| record_format |
dspace |
| spelling |
Нікітченко, М.С. Шкільняк, О.С. Шкільняк, C.С. 2018-12-29T19:03:45Z 2018-12-29T19:03:45Z 2018 Алгебри загальних недетермінованих предикатів / М.С. Нікітченко, О.С. Шкільняк, C.С. Шкільняк // Проблеми програмування. — 2018. — № 1. — С. 5-21. — Бібліогр.: 8 назв. — укр. 1727-4907 https://nasplib.isofts.kiev.ua/handle/123456789/144561 004.42:510.69 Запропоновано та досліджено логіки загальних недетермінованих квазіарних предикатів – GND-предикатів. Такі предикати є узагальненням часткових неоднозначних предикатів реляційного типу. Основна увага приділена побудові композиційних алгебр GND-предикатів. Виділено різновиди GND-предикатів, показано їх зв'язок із 7-значними тотальними детермінованими предикатами. Виділено 7-елементну алгебру істиннісних значень цих предикатів, описано усі її підалгебри. Такі підалгебри індукують відповідні алгебри GND-предикатів. Описано мови чистих першопорядкових логік GND-предикатів та їх інтерпретації. Введено та досліджено відношення логічного G-наслідку. Предложены и исследованы новые программно-ориентированные логические формализмы – логики общих недетерминированных квазиарных предикатов, названных GND-предикатами. Эти предикаты являются обобщением частичных неоднозначных предикатов реляционного типа. Основное внимание уделено построению композиционных алгебр GND-предикатов. Выделены разновидности таких предикатов, описаны их композиции. GND-предикаты можно моделировать как 7-значные тотальные детерминированные – ТD7-предикаты. Выделена 7-элементная алгебра истинностных значений TD7-предикатов, описаны все ее подалгебры. Каждая такая подалгебра индуцирует соответствующую алгебру TD7-предикатов, которая далее индуцирует алгебру GND-предикатов. Это позволило выделить ряд важных композиционных алгебр общих недетерминированных предикатов. Описаны языки чистых первопорядковых логик GND-предикатов, их интерпретации. Введены отношения логического G-следствия и логической G-эквивалентности. Отношение логического G-следствия является монотонным, рефлексивным и транзитивным, для него выполняются свойства декомпозиции формул. На основе этих свойств для логик GND-предикатов планируется построение исчислений секвенциального типа. Предложены и исследованы новые программно-ориентированные логические формализмы – логики общих недетерминированных квазиарных предикатов, названных GND-предикатами. Эти предикаты являются обобщением частичных неоднозначных предикатов реляционного типа. Основное внимание уделено построению композиционных алгебр GND-предикатов. Выделены разновидности таких предикатов, описаны их композиции. GND-предикаты можно моделировать как 7-значные тотальные детерминированные – ТD7-предикаты. Выделена 7-элементная алгебра истинностных значений TD7-предикатов, описаны все ее подалгебры. Каждая такая подалгебра индуцирует соответствующую алгебру TD7-предикатов, которая далее индуцирует алгебру GND-предикатов. Это позволило выделить ряд важных композиционных алгебр общих недетерминированных предикатов. Описаны языки чистых первопорядковых логик GND-предикатов, их интерпретации. Введены отношения логического G-следствия и логической G-эквивалентности. Отношение логического G-следствия является монотонным, рефлексивным и транзитивным, для него выполняются свойства декомпозиции формул. На основе этих свойств для логик GND-предикатов планируется построение исчислений секвенциального типа. uk Інститут програмних систем НАН України Проблеми програмування Теоретичні та методологічні основи програмування Алгебри загальних недетермінованих предикатів Алгебры общих недетерминированных предикатов Algebras of general non-deterministic predicates Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Алгебри загальних недетермінованих предикатів |
| spellingShingle |
Алгебри загальних недетермінованих предикатів Нікітченко, М.С. Шкільняк, О.С. Шкільняк, C.С. Теоретичні та методологічні основи програмування |
| title_short |
Алгебри загальних недетермінованих предикатів |
| title_full |
Алгебри загальних недетермінованих предикатів |
| title_fullStr |
Алгебри загальних недетермінованих предикатів |
| title_full_unstemmed |
Алгебри загальних недетермінованих предикатів |
| title_sort |
алгебри загальних недетермінованих предикатів |
| author |
Нікітченко, М.С. Шкільняк, О.С. Шкільняк, C.С. |
| author_facet |
Нікітченко, М.С. Шкільняк, О.С. Шкільняк, C.С. |
| topic |
Теоретичні та методологічні основи програмування |
| topic_facet |
Теоретичні та методологічні основи програмування |
| publishDate |
2018 |
| language |
Ukrainian |
| container_title |
Проблеми програмування |
| publisher |
Інститут програмних систем НАН України |
| format |
Article |
| title_alt |
Алгебры общих недетерминированных предикатов Algebras of general non-deterministic predicates |
| description |
Запропоновано та досліджено логіки загальних недетермінованих квазіарних предикатів – GND-предикатів. Такі предикати є узагальненням часткових неоднозначних предикатів реляційного типу. Основна увага приділена побудові композиційних алгебр GND-предикатів. Виділено різновиди GND-предикатів, показано їх зв'язок із 7-значними тотальними детермінованими предикатами. Виділено 7-елементну алгебру істиннісних значень цих предикатів, описано усі її підалгебри. Такі підалгебри індукують відповідні алгебри GND-предикатів. Описано мови чистих першопорядкових логік GND-предикатів та їх інтерпретації. Введено та досліджено відношення логічного G-наслідку.
Предложены и исследованы новые программно-ориентированные логические формализмы – логики общих недетерминированных квазиарных предикатов, названных GND-предикатами. Эти предикаты являются обобщением частичных неоднозначных предикатов реляционного типа. Основное внимание уделено построению композиционных алгебр GND-предикатов. Выделены разновидности таких предикатов, описаны их композиции. GND-предикаты можно моделировать как 7-значные тотальные детерминированные – ТD7-предикаты. Выделена 7-элементная алгебра истинностных значений TD7-предикатов, описаны все ее подалгебры. Каждая такая подалгебра индуцирует соответствующую алгебру TD7-предикатов, которая далее индуцирует алгебру GND-предикатов. Это позволило выделить ряд важных композиционных алгебр общих недетерминированных предикатов. Описаны языки чистых первопорядковых логик GND-предикатов, их интерпретации. Введены отношения логического G-следствия и логической G-эквивалентности. Отношение логического G-следствия является монотонным, рефлексивным и транзитивным, для него выполняются свойства декомпозиции формул. На основе этих свойств для логик GND-предикатов планируется построение исчислений секвенциального типа.
Предложены и исследованы новые программно-ориентированные логические формализмы – логики общих недетерминированных квазиарных предикатов, названных GND-предикатами. Эти предикаты являются обобщением частичных неоднозначных предикатов реляционного типа. Основное внимание уделено построению композиционных алгебр GND-предикатов. Выделены разновидности таких предикатов, описаны их композиции. GND-предикаты можно моделировать как 7-значные тотальные детерминированные – ТD7-предикаты. Выделена 7-элементная алгебра истинностных значений TD7-предикатов, описаны все ее подалгебры. Каждая такая подалгебра индуцирует соответствующую алгебру TD7-предикатов, которая далее индуцирует алгебру GND-предикатов. Это позволило выделить ряд важных композиционных алгебр общих недетерминированных предикатов. Описаны языки чистых первопорядковых логик GND-предикатов, их интерпретации. Введены отношения логического G-следствия и логической G-эквивалентности. Отношение логического G-следствия является монотонным, рефлексивным и транзитивным, для него выполняются свойства декомпозиции формул. На основе этих свойств для логик GND-предикатов планируется построение исчислений секвенциального типа.
|
| issn |
1727-4907 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/144561 |
| citation_txt |
Алгебри загальних недетермінованих предикатів / М.С. Нікітченко, О.С. Шкільняк, C.С. Шкільняк // Проблеми програмування. — 2018. — № 1. — С. 5-21. — Бібліогр.: 8 назв. — укр. |
| work_keys_str_mv |
AT níkítčenkoms algebrizagalʹnihnedetermínovanihpredikatív AT škílʹnâkos algebrizagalʹnihnedetermínovanihpredikatív AT škílʹnâkcs algebrizagalʹnihnedetermínovanihpredikatív AT níkítčenkoms algebryobŝihnedeterminirovannyhpredikatov AT škílʹnâkos algebryobŝihnedeterminirovannyhpredikatov AT škílʹnâkcs algebryobŝihnedeterminirovannyhpredikatov AT níkítčenkoms algebrasofgeneralnondeterministicpredicates AT škílʹnâkos algebrasofgeneralnondeterministicpredicates AT škílʹnâkcs algebrasofgeneralnondeterministicpredicates |
| first_indexed |
2025-12-07T18:16:28Z |
| last_indexed |
2025-12-07T18:16:28Z |
| _version_ |
1850874410401005568 |