Математическое моделирование дробно-дифференциальной фильтрационной динамики на основе модели с производной Хильфера–Прабхакара

Побудовано узагальнену математичну модель для опису дробово-диференційної динаміки процесів фільтрації в тріщинувато-пористих середовищах, яка ґрунтується на використанні поняття дробової похідної Хільфера–Прабхакара. У рамках зазначеної моделі одержано замкнені розв’язки низки крайових задач теорії...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Кибернетика и системный анализ
Дата:2017
Автор: Булавацкий, В.М.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2017
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/144711
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Математическое моделирование дробно-дифференциальной фильтрационной динамики на основе модели с производной Хильфера–Прабхакара / В.М. Булавацкий // Кибернетика и системный анализ. — 2017. — Т. 53, № 2. — С. 51–64. — Бібліогр.: 24 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Побудовано узагальнену математичну модель для опису дробово-диференційної динаміки процесів фільтрації в тріщинувато-пористих середовищах, яка ґрунтується на використанні поняття дробової похідної Хільфера–Прабхакара. У рамках зазначеної моделі одержано замкнені розв’язки низки крайових задач теорії фільтрації щодо моделювання динаміки тисків при пуску свердловин у випадку плоско-радіальної фільтрації, а також роботі галерей за умов плоско-паралельної фільтрації. Построена обобщенная математическая модель для описания дробно-дифференциальной динамики процессов фильтрации в трещиновато-пористых средах, основанная на использовании понятия дробной производной Хильфера–Прабхакара. В рамках указанной модели получены замкнутые решения ряда краевых задач теории фильтрации о моделировании динамики давлений при пуске скважин в случае плоско-радиальной фильтрации, а также работе галерей в условиях плоско-параллельной фильтрации. We construct a generalized mathematical model to describe the fractional differential dynamics of filtration processes in fractured porous media, based on the use of the concept of Hilfer–Prabhakar fractional derivative. Within the framework of this model, we obtain a number of closed solutions to boundary-value problems of filtration theory for modeling the dynamics of pressures at launch of wells in case of plane-radial filtration, as well as by activity of galleries under plane-parallel filtration.
ISSN:0023-1274