Наибольшая точная нижняя граница вероятности отказа системы в специальном интервале времени при неполной информации о функции распределения времени до отказа системы
Решается задача нахождения точных нижних границ вероятности F(v)−F(u), 0<u<v<∞, где u=m−σμ3√3, v=m+σμ3√3, σμ — заданная дисперсия в множестве функций распределения F(x) неотрицательных случайных величин с унимодальной дифференцируемой плотностью с модой, равной m, и двумя первыми фиксирован...
Збережено в:
| Опубліковано в: : | Кибернетика и системный анализ |
|---|---|
| Дата: | 2017 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2017
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/144712 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Наибольшая точная нижняя граница вероятности отказа системы в специальном интервале времени при неполной информации о функции распределения времени до отказа системы / Л.С. Стойкова // Кибернетика и системный анализ. — 2017. — Т. 53, № 2. — С. 65–73. — Бібліогр.: 7 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Решается задача нахождения точных нижних границ вероятности F(v)−F(u), 0<u<v<∞, где u=m−σμ3√3, v=m+σμ3√3, σμ — заданная дисперсия в множестве функций распределения F(x) неотрицательных случайных величин с унимодальной дифференцируемой плотностью с модой, равной m, и двумя первыми фиксированными моментами μ₁, μ₂. Рассматривается случай, когда мода совпадает с первым моментом: m=μ₁. Найдена наибольшая вероятность из всех точных нижних границ вероятностей для решаемой задачи, и она является близкой к единице, т.е. равной 0,98430.
Розв'язується задача знаходження точних нижніх границь імовірності F(v)−F(u), 0<u<v<∞, де u=m−σμ 3√3, v=m+σμ 3√3, σμ — фіксована дисперсія в множині функцій розподілу F(x) невід'ємних випадкових величин з унімодальною диференційованою щільністю з модою, рівною m, і двома першими фіксованими моментами μ₁, μ₂. Розглянуто випадок, коли мода збігається з першим моментом: m=μ₁. Знайдено найбільшу ймовірність із всіх точних нижніх границь ймовірностей для даної задачі, і вона є близькою до 1, а саме рівна 0,98430.
The author solves the problem of finding exact lower bounds for the probability F(v)−F(u), 0<u<v<∞, where u=m−σμ3√3, v=m+σμ3√3, and σμ is a fixed dispersion in the set of distribution functions F(x) of non-negative random variables with unimodal differentiable density with mode m and two first fixed moments μ₁, μ₂. The case is considered where the mode coincides with the first moment: m=μ₁. The greatest lower bound of all possible exact lower bounds for this problem is obtained and it is nearly one, namely, is equal to 0.98430.
|
|---|---|
| ISSN: | 0023-1274 |