On the boundary behavior of conjugate harmonic functions
It is proved that if a harmonic function u on the unit disk D in C has angular limits on a measurable set E of the unit circle, then its conjugate harmonic function v in D also has (finite !) angular limits a.e. on E and both boundary functions are measurable on E. The result is extended to arbitrar...
Gespeichert in:
| Veröffentlicht in: | Праці Інституту прикладної математики і механіки НАН України |
|---|---|
| Datum: | 2017 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2017
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/145115 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On the boundary behavior of conjugate harmonic functions / V.I. Ryazanov // Праці Інституту прикладної математики і механіки НАН України. — Слов’янськ: ІПММ НАН України, 2017. — Т. 31. — С. 117-123. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-145115 |
|---|---|
| record_format |
dspace |
| spelling |
Ryazanov, V.I. 2019-01-15T18:48:12Z 2019-01-15T18:48:12Z 2017 On the boundary behavior of conjugate harmonic functions / V.I. Ryazanov // Праці Інституту прикладної математики і механіки НАН України. — Слов’янськ: ІПММ НАН України, 2017. — Т. 31. — С. 117-123. — Бібліогр.: 19 назв. — англ. 1683-4720 2010 Mathematics Subject Classification: Primary 30C62, 31A05, 31A20, 31A25, 31B25; Secondary 30E25, 31C05, 34M50, 35F45, 35Q15. https://nasplib.isofts.kiev.ua/handle/123456789/145115 517.54 It is proved that if a harmonic function u on the unit disk D in C has angular limits on a measurable set E of the unit circle, then its conjugate harmonic function v in D also has (finite !) angular limits a.e. on E and both boundary functions are measurable on E. The result is extended to arbitrary Jordan domains with rectifiable boundaries in terms of angular limits and of the natural parameter. This result is essentially based on the Fatou theorem on angular limits of bounded analytic functions and on the construction of Luzin and Priwalow to their uniqueness theorem for analytic and meromorphic functions. The result will have interesting applications to the study of the various Stieltjes integrals in the theory of harmonic and analytic functions and, in particular, of the Hilbert–Stieltjes inyegral. Доказывается, что если гармоническая функция u, заданная в единичном круге D комплексной плоскости C, имеет угловые пределы на измеримом множестве E единичной окружности, то ее сопряженная гармоническая функция v в D также имеет угловые пределы п.в. на E и обе граничные функции п.в. конечны и измеримы на E. Затем этот результат распространяется на произвольные жордановы области со спрямляемыми границами в терминах угловых пределов относительно естественного параметра. Результат существенно основывается на теореме Фату об угловых пределах ограниченных аналитических функций и конструкции Лузина и Привалова к их теореме единственности для аналитических и мероморфных функций. Результат будет иметь интересные приложения к изучению различных интегралов Стилтьеса в теории гармонических и аналитических функций и, в частности, интеграла Гильберта–Стилтьеса. Доводиться, що якщо гармонiйна функцiя u, що задана в одиничному колi D комплексної площинi C, має кутовi межi на вимiрної множинi E одиничного кола, то її сполучена гармонiйна функцiя v в D також має кутовi межi п.в. на E i обидвi граничнi функцiї п.в. кiнцевi та вимiрнi на E. Потiм цей результат поширюється на довiльнi жорданова областi з границями, що спрямляються в термiнах кутових меж щодо природного параметра. Результат iстотно ґрунтується на теоремi Фату про кутовi межи обмежених аналiтичних функцiй та конструкцiї Лузiна i Привалова до їх теоремi єдиностi для аналiтичних i мероморфних функцiй. Результат буде мати цiкавi додатки до вивчення рiзних iнтегралiв Стiлтьєса в теорiї гармонiйних i аналiтичних функцiй i, зокрема, iнтеграла Гiльберта–Стiлтьєса. en Інститут прикладної математики і механіки НАН України Праці Інституту прикладної математики і механіки НАН України On the boundary behavior of conjugate harmonic functions О граничном поведении сопряженных гармонических функций Про граничну поведiнку пов’язаних гармонiйних функцiй Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the boundary behavior of conjugate harmonic functions |
| spellingShingle |
On the boundary behavior of conjugate harmonic functions Ryazanov, V.I. |
| title_short |
On the boundary behavior of conjugate harmonic functions |
| title_full |
On the boundary behavior of conjugate harmonic functions |
| title_fullStr |
On the boundary behavior of conjugate harmonic functions |
| title_full_unstemmed |
On the boundary behavior of conjugate harmonic functions |
| title_sort |
on the boundary behavior of conjugate harmonic functions |
| author |
Ryazanov, V.I. |
| author_facet |
Ryazanov, V.I. |
| publishDate |
2017 |
| language |
English |
| container_title |
Праці Інституту прикладної математики і механіки НАН України |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| title_alt |
О граничном поведении сопряженных гармонических функций Про граничну поведiнку пов’язаних гармонiйних функцiй |
| description |
It is proved that if a harmonic function u on the unit disk D in C has angular limits on a measurable set E of the unit circle, then its conjugate harmonic function v in D also has (finite !) angular limits a.e. on E and both boundary functions are measurable on E. The result is extended to arbitrary Jordan domains with rectifiable boundaries in terms of angular limits and of the natural parameter. This result is essentially based on the Fatou theorem on angular limits of bounded analytic functions and on the construction of Luzin and Priwalow to their uniqueness theorem for analytic and meromorphic functions. The result will have interesting applications to the study of the various Stieltjes integrals in the theory of harmonic and analytic functions and, in particular, of the Hilbert–Stieltjes inyegral.
Доказывается, что если гармоническая функция u, заданная в единичном круге D комплексной плоскости C, имеет угловые пределы на измеримом множестве E единичной окружности, то ее сопряженная гармоническая функция v в D также имеет угловые пределы п.в. на E и обе граничные функции п.в. конечны и измеримы на E. Затем этот результат распространяется на произвольные жордановы области со спрямляемыми границами в терминах угловых пределов относительно естественного параметра. Результат существенно основывается на теореме Фату об угловых пределах ограниченных аналитических функций и конструкции Лузина и Привалова к их теореме единственности для аналитических и мероморфных функций. Результат будет иметь интересные приложения к изучению различных интегралов Стилтьеса в теории гармонических и аналитических функций и, в частности, интеграла Гильберта–Стилтьеса.
Доводиться, що якщо гармонiйна функцiя u, що задана в одиничному колi D комплексної площинi C, має кутовi межi на вимiрної множинi E одиничного кола, то її сполучена гармонiйна функцiя v в D також має кутовi межi п.в. на E i обидвi граничнi функцiї п.в. кiнцевi та вимiрнi на E. Потiм цей результат поширюється на довiльнi жорданова областi з границями, що спрямляються в термiнах кутових меж щодо природного параметра. Результат iстотно ґрунтується на теоремi Фату про кутовi межи обмежених аналiтичних функцiй та конструкцiї Лузiна i Привалова до їх теоремi єдиностi для аналiтичних i мероморфних функцiй. Результат буде мати цiкавi додатки до вивчення рiзних iнтегралiв Стiлтьєса в теорiї гармонiйних i аналiтичних функцiй i, зокрема, iнтеграла Гiльберта–Стiлтьєса.
|
| issn |
1683-4720 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/145115 |
| citation_txt |
On the boundary behavior of conjugate harmonic functions / V.I. Ryazanov // Праці Інституту прикладної математики і механіки НАН України. — Слов’янськ: ІПММ НАН України, 2017. — Т. 31. — С. 117-123. — Бібліогр.: 19 назв. — англ. |
| work_keys_str_mv |
AT ryazanovvi ontheboundarybehaviorofconjugateharmonicfunctions AT ryazanovvi ograničnompovedeniisoprâžennyhgarmoničeskihfunkcii AT ryazanovvi prograničnupovedinkupovâzanihgarmoniinihfunkcii |
| first_indexed |
2025-12-07T16:00:34Z |
| last_indexed |
2025-12-07T16:00:34Z |
| _version_ |
1850865860763189248 |