Destabilization of human cell genome under the combined effect of radiation and ascorbic acid

The aim of this study was to investigate peculiarities of ascorbic acid effect on radiation-induced chromosomal aberrations frequency and range in the cultured peripheral blood lymphocytes (PBL) of healthy donors and cancer patients depending on doses of radiation and drug, as well as cells radiosen...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Experimental Oncology
Дата:2014
Автори: Domina, E.A., Pylypchuk, O.P., Mikhailenko, V.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України 2014
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/145374
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Destabilization of human cell genome under the combined effect of radiation and ascorbic acid / E.A. Domina, O.P. Pylypchuk, V.M. Mikhailenko // Experimental Oncology. — 2014. — Т. 36, № 4. — С. 236-240. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-145374
record_format dspace
spelling Domina, E.A.
Pylypchuk, O.P.
Mikhailenko, V.M.
2019-01-21T08:31:28Z
2019-01-21T08:31:28Z
2014
Destabilization of human cell genome under the combined effect of radiation and ascorbic acid / E.A. Domina, O.P. Pylypchuk, V.M. Mikhailenko // Experimental Oncology. — 2014. — Т. 36, № 4. — С. 236-240. — Бібліогр.: 21 назв. — англ.
1812-9269
https://nasplib.isofts.kiev.ua/handle/123456789/145374
The aim of this study was to investigate peculiarities of ascorbic acid effect on radiation-induced chromosomal aberrations frequency and range in the cultured peripheral blood lymphocytes (PBL) of healthy donors and cancer patients depending on doses of radiation and drug, as well as cells radiosensitivity (in vitro). Methods: Test system of human PBL, metaphase analysis of chromosomal aberrations. Cells were cultivated according to the standard procedures with some modifications. PBL culture was exposed to x-ray radiation in G0- and G2-phases of cell cycle. Immediately after the irradiation the culture was treated with ascorbic acid in concentrations of 20.0–80.0 µg/ml of blood. Results: Cell culture irradiation in low dose (0.3 Gy) and treatment with ascorbic acid in therapeutic concentration (20.0 μg/ml of blood) resulted in radioprotective effect, decreasing overall chromosome aberrations frequency as opposed to radiation effects. It has been established that post-irradiation effect of ascorbic acid upon the PBL culture in concentrations of 40.0 and 80.0 μg/ml, which exceeding therapeutic concentration value 2 and 4 times correspondingly, increased overall chromosome aberrations frequency 1.4 times compared with irradiation effect in a low dose (0.3 Gy). This bears evidence of ascorbic acid co-mutagenic activity in the range of concentrations exceeding therapeutic values. The peak of mitotic activity inhibition was observed at 2.0 Gy irradiation dose. Addition ascorbic acid in therapeutic concentration increased radiation effect this number ≈ 2 times (exceeding even intact control value). Compared with G0-phase, co-mutagenic effect of ascorbic acid in G2-phase appears earlier, starting with dose of 1.0 Gy. In the blood lymphocytes of cancer patients, the level of genetic damage was increased 1.7 times after combined treatment with low dose irradiation and ascorbic acid in comparison with irradiation alone which suggest the co-mutagenic instead of radioprotective effect of ascorbic acid. Conclusions: Genome destabilization enhancement of irradiated in vitro human somatic cells under ascorbic acid effect is due to its co-mutagenic properties. The formation of co-mutagenic effects of ascorbic acid depend on its concentration, irradiation dose and the efficiency of repair processes. Co-mutagenes may pose high carcinogenic hazard at low (above background) radiation levels. Key Words: ionizing radiation, ascorbic acid, peripheral blood lymphocytes of donors and cancer patients, chromosome aberrations, co-mutagens.
en
Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
Experimental Oncology
Original contributions
Destabilization of human cell genome under the combined effect of radiation and ascorbic acid
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Destabilization of human cell genome under the combined effect of radiation and ascorbic acid
spellingShingle Destabilization of human cell genome under the combined effect of radiation and ascorbic acid
Domina, E.A.
Pylypchuk, O.P.
Mikhailenko, V.M.
Original contributions
title_short Destabilization of human cell genome under the combined effect of radiation and ascorbic acid
title_full Destabilization of human cell genome under the combined effect of radiation and ascorbic acid
title_fullStr Destabilization of human cell genome under the combined effect of radiation and ascorbic acid
title_full_unstemmed Destabilization of human cell genome under the combined effect of radiation and ascorbic acid
title_sort destabilization of human cell genome under the combined effect of radiation and ascorbic acid
author Domina, E.A.
Pylypchuk, O.P.
Mikhailenko, V.M.
author_facet Domina, E.A.
Pylypchuk, O.P.
Mikhailenko, V.M.
topic Original contributions
topic_facet Original contributions
publishDate 2014
language English
container_title Experimental Oncology
publisher Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
format Article
description The aim of this study was to investigate peculiarities of ascorbic acid effect on radiation-induced chromosomal aberrations frequency and range in the cultured peripheral blood lymphocytes (PBL) of healthy donors and cancer patients depending on doses of radiation and drug, as well as cells radiosensitivity (in vitro). Methods: Test system of human PBL, metaphase analysis of chromosomal aberrations. Cells were cultivated according to the standard procedures with some modifications. PBL culture was exposed to x-ray radiation in G0- and G2-phases of cell cycle. Immediately after the irradiation the culture was treated with ascorbic acid in concentrations of 20.0–80.0 µg/ml of blood. Results: Cell culture irradiation in low dose (0.3 Gy) and treatment with ascorbic acid in therapeutic concentration (20.0 μg/ml of blood) resulted in radioprotective effect, decreasing overall chromosome aberrations frequency as opposed to radiation effects. It has been established that post-irradiation effect of ascorbic acid upon the PBL culture in concentrations of 40.0 and 80.0 μg/ml, which exceeding therapeutic concentration value 2 and 4 times correspondingly, increased overall chromosome aberrations frequency 1.4 times compared with irradiation effect in a low dose (0.3 Gy). This bears evidence of ascorbic acid co-mutagenic activity in the range of concentrations exceeding therapeutic values. The peak of mitotic activity inhibition was observed at 2.0 Gy irradiation dose. Addition ascorbic acid in therapeutic concentration increased radiation effect this number ≈ 2 times (exceeding even intact control value). Compared with G0-phase, co-mutagenic effect of ascorbic acid in G2-phase appears earlier, starting with dose of 1.0 Gy. In the blood lymphocytes of cancer patients, the level of genetic damage was increased 1.7 times after combined treatment with low dose irradiation and ascorbic acid in comparison with irradiation alone which suggest the co-mutagenic instead of radioprotective effect of ascorbic acid. Conclusions: Genome destabilization enhancement of irradiated in vitro human somatic cells under ascorbic acid effect is due to its co-mutagenic properties. The formation of co-mutagenic effects of ascorbic acid depend on its concentration, irradiation dose and the efficiency of repair processes. Co-mutagenes may pose high carcinogenic hazard at low (above background) radiation levels. Key Words: ionizing radiation, ascorbic acid, peripheral blood lymphocytes of donors and cancer patients, chromosome aberrations, co-mutagens.
issn 1812-9269
url https://nasplib.isofts.kiev.ua/handle/123456789/145374
citation_txt Destabilization of human cell genome under the combined effect of radiation and ascorbic acid / E.A. Domina, O.P. Pylypchuk, V.M. Mikhailenko // Experimental Oncology. — 2014. — Т. 36, № 4. — С. 236-240. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT dominaea destabilizationofhumancellgenomeunderthecombinedeffectofradiationandascorbicacid
AT pylypchukop destabilizationofhumancellgenomeunderthecombinedeffectofradiationandascorbicacid
AT mikhailenkovm destabilizationofhumancellgenomeunderthecombinedeffectofradiationandascorbicacid
first_indexed 2025-11-28T09:42:46Z
last_indexed 2025-11-28T09:42:46Z
_version_ 1850853572081614848