On the distribution of a rotationally invariant α-stable process at the hitting time of a given hyperplane
We find out an explicit formula for the distribution of a rotationally invariant α-stable process at that moment of time, when it hits a given hyperplane for the first time. The case of 1 < α ≤ 2 is considered. Ми знаходимо явну формулу для розподілу ротаційно інваріантного α-стійкого процесу в...
Saved in:
| Published in: | Доповіді НАН України |
|---|---|
| Date: | 2018 |
| Main Authors: | Osypchuk, M.M., Portenko, M.I. |
| Format: | Article |
| Language: | English |
| Published: |
Видавничий дім "Академперіодика" НАН України
2018
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/145817 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the distribution of a rotationally invariant α-stable process at the hitting time of a given hyperplane / M.M. Osypchuk, M.I. Portenko // Доповіді Національної академії наук України. — 2018. — № 12. — С. 14-20. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the distribution of a rotationally invariant α-stable process at the hitting time of a given hyperplane
by: M. M. Osypchuk, et al.
Published: (2018) -
Brownian motion in a euclidean space with a membrane located on a given hyperplane
by: B. I. Kopytko, et al.
Published: (2022) -
One type of singular perturbations of a~multidimensional stable process
by: M. M. Osypchuk, et al.
Published: (2014) -
Symmetric a-stable stochastic process and the third initial-boundary-value problem for the corresponding pseudodifferential equation
by: M. M. Osypchuk, et al.
Published: (2017) -
Poincare inequality and exponential integrability of the hitting times of a Markov process
by: A. M. Kulik
Published: (2011)