Сходимость инерционных гибридных алгоритмов расщепления
Предложены два новых инерционных алгоритма для решения операторных включений с максимальными монотонными операторами, действующими в гильбертовом пространстве. Алгоритмы основаны на схеме инерционной экстраполяции и трех известных методах: алгоритме расщепления Tseng’а и двух гибридных алгоритмах...
Gespeichert in:
| Veröffentlicht in: | Доповіді НАН України |
|---|---|
| Datum: | 2018 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Видавничий дім "Академперіодика" НАН України
2018
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/145819 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Сходимость инерционных гибрид ных алгоритмов расщепления / В.В. Семёнов // Доповіді Національної академії наук України. — 2018. — № 12. — С. 30-36. — Бібліогр.: 13 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-145819 |
|---|---|
| record_format |
dspace |
| spelling |
Семёнов, В.В. 2019-01-31T11:33:54Z 2019-01-31T11:33:54Z 2018 Сходимость инерционных гибрид ных алгоритмов расщепления / В.В. Семёнов // Доповіді Національної академії наук України. — 2018. — № 12. — С. 30-36. — Бібліогр.: 13 назв. — рос. 1025-6415 DOI: doi.org/10.15407/dopovidi2018.12.030 https://nasplib.isofts.kiev.ua/handle/123456789/145819 517.988 Предложены два новых инерционных алгоритма для решения операторных включений с максимальными монотонными операторами, действующими в гильбертовом пространстве. Алгоритмы основаны на схеме инерционной экстраполяции и трех известных методах: алгоритме расщепления Tseng’а и двух гибридных алгоритмах для аппроксимации неподвижных точек нерастягивающих операторов. Доказаны теоремы о сильной сходимости порожденных алгоритмами последовательностей. Запропоновано два нових інерційних алгоритми для розв’язання операторних включень з максимальними монотонними операторами, що діють в гільбертовому просторі. Алгоритми базуються на схемі інерційної екстраполяції та трьох відомих методах: алгоритмі розщеплення Tseng’а та двох гібридних алгоритмах для аппроксимації нерухомих точок нерозтягуючих операторів. Доведено теореми про сильну збіжність породжених алгоритмами послідовностей. Two new algorithms for solving the operator inclusion problems with maximal monotone operators acting in a Hilbert space are proposed. Algorithms are based on the inertial extrapolation and three well-known methods: Tseng forward-backward splitting algorithm and two hybrid algorithms for the approximation of fixed points of nonexpansive operators. Theorems on the strong convergence of the sequences generated by the algorithms are proved. Работа выполнена при финансовой поддержке МОН Украины (проект “Розробка алгоритмів моделювання та оптимізації динамічних систем для оборони, медицини та екології”, 0116U004777). ru Видавничий дім "Академперіодика" НАН України Доповіді НАН України Інформатика та кібернетика Сходимость инерционных гибридных алгоритмов расщепления Збіжність інерційних гібридних алгоритмів розщеплення Convergence of inertial hybrid splitting algorithms Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Сходимость инерционных гибридных алгоритмов расщепления |
| spellingShingle |
Сходимость инерционных гибридных алгоритмов расщепления Семёнов, В.В. Інформатика та кібернетика |
| title_short |
Сходимость инерционных гибридных алгоритмов расщепления |
| title_full |
Сходимость инерционных гибридных алгоритмов расщепления |
| title_fullStr |
Сходимость инерционных гибридных алгоритмов расщепления |
| title_full_unstemmed |
Сходимость инерционных гибридных алгоритмов расщепления |
| title_sort |
сходимость инерционных гибридных алгоритмов расщепления |
| author |
Семёнов, В.В. |
| author_facet |
Семёнов, В.В. |
| topic |
Інформатика та кібернетика |
| topic_facet |
Інформатика та кібернетика |
| publishDate |
2018 |
| language |
Russian |
| container_title |
Доповіді НАН України |
| publisher |
Видавничий дім "Академперіодика" НАН України |
| format |
Article |
| title_alt |
Збіжність інерційних гібридних алгоритмів розщеплення Convergence of inertial hybrid splitting algorithms |
| description |
Предложены два новых инерционных алгоритма для решения операторных включений с максимальными
монотонными операторами, действующими в гильбертовом пространстве. Алгоритмы основаны на схеме
инерционной экстраполяции и трех известных методах: алгоритме расщепления Tseng’а и двух гибридных
алгоритмах для аппроксимации неподвижных точек нерастягивающих операторов. Доказаны теоремы о
сильной сходимости порожденных алгоритмами последовательностей.
Запропоновано два нових інерційних алгоритми для розв’язання операторних включень з максимальними монотонними операторами, що діють в гільбертовому просторі. Алгоритми базуються на схемі інерційної екстраполяції та трьох відомих методах: алгоритмі розщеплення Tseng’а та двох гібридних алгоритмах для аппроксимації нерухомих точок нерозтягуючих операторів. Доведено теореми про сильну збіжність породжених алгоритмами послідовностей.
Two new algorithms for solving the operator inclusion problems with maximal monotone operators acting in
a Hilbert space are proposed. Algorithms are based on the inertial extrapolation and three well-known methods:
Tseng forward-backward splitting algorithm and two hybrid algorithms for the approximation of fixed
points of nonexpansive operators. Theorems on the strong convergence of the sequences generated by the
algorithms are proved.
|
| issn |
1025-6415 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/145819 |
| citation_txt |
Сходимость инерционных гибрид ных алгоритмов расщепления / В.В. Семёнов // Доповіді Національної академії наук України. — 2018. — № 12. — С. 30-36. — Бібліогр.: 13 назв. — рос. |
| work_keys_str_mv |
AT semenovvv shodimostʹinercionnyhgibridnyhalgoritmovrasŝepleniâ AT semenovvv zbížnístʹínercíinihgíbridnihalgoritmívrozŝeplennâ AT semenovvv convergenceofinertialhybridsplittingalgorithms |
| first_indexed |
2025-11-27T18:45:55Z |
| last_indexed |
2025-11-27T18:45:55Z |
| _version_ |
1850852660994899968 |