Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands
The objective of the work was to perform the comparative studies of the anatomical structure and reactive oxygen species (ROS) content in leaves of Deschampsia antarctica plants growing in extreme climatic conditions of Antarctica (Skua and Galindez Іslands). Метою роботи було проведення порівняльни...
Gespeichert in:
| Veröffentlicht in: | Український антарктичний журнал |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний антарктичний науковий центр МОН України
2017
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/145845 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands / E.L. Kordyum, О.M. Nedukha, Y.V. Ovcharenko, S.I. Jadko, G.F. Ivanenko, V.V. Loya // Український антарктичний журнал. — 2017. — № 16. — С. 143-149. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-145845 |
|---|---|
| record_format |
dspace |
| spelling |
Kordyum, E.L. Nedukha, О.M. Ovcharenko, Y.V. Jadko, S.I. Ivanenko, G.F. Loya, V.V. 2019-01-31T18:12:15Z 2019-01-31T18:12:15Z 2017 Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands / E.L. Kordyum, О.M. Nedukha, Y.V. Ovcharenko, S.I. Jadko, G.F. Ivanenko, V.V. Loya // Український антарктичний журнал. — 2017. — № 16. — С. 143-149. — Бібліогр.: 18 назв. — англ. 1727-7485 https://nasplib.isofts.kiev.ua/handle/123456789/145845 581.8:581.45:582.54(99) The objective of the work was to perform the comparative studies of the anatomical structure and reactive oxygen species (ROS) content in leaves of Deschampsia antarctica plants growing in extreme climatic conditions of Antarctica (Skua and Galindez Іslands). Метою роботи було проведення порівняльних досліджень анатомічної структури та вмісту активних форм кисню (АФК) в листках Deschampsia antarctica (Poaceae), що росте в екстремальних кліматичних умовах Антарктики (острови Скуа і Галіндез). Целью работы было проведение сравнительных исследований анатомической структуры и содержания активных форм кислорода (АФК) в листьях растений Deschampsia antarctica (Poaceae), произрастающей в экстремальных климатических условиях Антарктики (острова Скуа и Галиндез). The authors are grateful to the State Institution National Antarctic Scientific Center of the Ministry of Education and Science of Ukraine for providing samples of Antarctic vascular plants. en Національний антарктичний науковий центр МОН України Український антарктичний журнал Біологічні дослідження Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands Анатомічна і функціональна характеристика листковoї пластинки Deschampsia аntarctica (Poaceae), що росте на Аргентинських островах Aнатомическая и функциональная характеристика листовой пластинки Deschampsia аntarctica (Poaceae), произрастающей на Аргентинских островах Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands |
| spellingShingle |
Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands Kordyum, E.L. Nedukha, О.M. Ovcharenko, Y.V. Jadko, S.I. Ivanenko, G.F. Loya, V.V. Біологічні дослідження |
| title_short |
Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands |
| title_full |
Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands |
| title_fullStr |
Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands |
| title_full_unstemmed |
Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands |
| title_sort |
anatomical and functional fеatures of deschampsia antarctica (poaceae) leaf blade growing on the argentine islands |
| author |
Kordyum, E.L. Nedukha, О.M. Ovcharenko, Y.V. Jadko, S.I. Ivanenko, G.F. Loya, V.V. |
| author_facet |
Kordyum, E.L. Nedukha, О.M. Ovcharenko, Y.V. Jadko, S.I. Ivanenko, G.F. Loya, V.V. |
| topic |
Біологічні дослідження |
| topic_facet |
Біологічні дослідження |
| publishDate |
2017 |
| language |
English |
| container_title |
Український антарктичний журнал |
| publisher |
Національний антарктичний науковий центр МОН України |
| format |
Article |
| title_alt |
Анатомічна і функціональна характеристика листковoї пластинки Deschampsia аntarctica (Poaceae), що росте на Аргентинських островах Aнатомическая и функциональная характеристика листовой пластинки Deschampsia аntarctica (Poaceae), произрастающей на Аргентинских островах |
| description |
The objective of the work was to perform the comparative studies of the anatomical structure and reactive oxygen species (ROS) content in leaves of Deschampsia antarctica plants growing in extreme climatic conditions of Antarctica (Skua and Galindez Іslands).
Метою роботи було проведення порівняльних досліджень анатомічної структури та вмісту активних форм кисню (АФК) в листках Deschampsia antarctica (Poaceae), що росте в екстремальних кліматичних умовах Антарктики (острови Скуа і Галіндез).
Целью работы было проведение сравнительных исследований анатомической структуры и содержания активных форм кислорода (АФК) в листьях растений Deschampsia antarctica (Poaceae), произрастающей в экстремальных климатических условиях Антарктики (острова Скуа и Галиндез).
|
| issn |
1727-7485 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/145845 |
| citation_txt |
Anatomical and functional fеatures of Deschampsia antarctica (Poaceae) leaf blade growing on the Argentine Islands / E.L. Kordyum, О.M. Nedukha, Y.V. Ovcharenko, S.I. Jadko, G.F. Ivanenko, V.V. Loya // Український антарктичний журнал. — 2017. — № 16. — С. 143-149. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT kordyumel anatomicalandfunctionalfeaturesofdeschampsiaantarcticapoaceaeleafbladegrowingontheargentineislands AT nedukhaom anatomicalandfunctionalfeaturesofdeschampsiaantarcticapoaceaeleafbladegrowingontheargentineislands AT ovcharenkoyv anatomicalandfunctionalfeaturesofdeschampsiaantarcticapoaceaeleafbladegrowingontheargentineislands AT jadkosi anatomicalandfunctionalfeaturesofdeschampsiaantarcticapoaceaeleafbladegrowingontheargentineislands AT ivanenkogf anatomicalandfunctionalfeaturesofdeschampsiaantarcticapoaceaeleafbladegrowingontheargentineislands AT loyavv anatomicalandfunctionalfeaturesofdeschampsiaantarcticapoaceaeleafbladegrowingontheargentineislands AT kordyumel anatomíčnaífunkcíonalʹnaharakteristikalistkovoíplastinkideschampsiaantarcticapoaceaeŝorostenaargentinsʹkihostrovah AT nedukhaom anatomíčnaífunkcíonalʹnaharakteristikalistkovoíplastinkideschampsiaantarcticapoaceaeŝorostenaargentinsʹkihostrovah AT ovcharenkoyv anatomíčnaífunkcíonalʹnaharakteristikalistkovoíplastinkideschampsiaantarcticapoaceaeŝorostenaargentinsʹkihostrovah AT jadkosi anatomíčnaífunkcíonalʹnaharakteristikalistkovoíplastinkideschampsiaantarcticapoaceaeŝorostenaargentinsʹkihostrovah AT ivanenkogf anatomíčnaífunkcíonalʹnaharakteristikalistkovoíplastinkideschampsiaantarcticapoaceaeŝorostenaargentinsʹkihostrovah AT loyavv anatomíčnaífunkcíonalʹnaharakteristikalistkovoíplastinkideschampsiaantarcticapoaceaeŝorostenaargentinsʹkihostrovah AT kordyumel anatomičeskaâifunkcionalʹnaâharakteristikalistovoiplastinkideschampsiaantarcticapoaceaeproizrastaûŝeinaargentinskihostrovah AT nedukhaom anatomičeskaâifunkcionalʹnaâharakteristikalistovoiplastinkideschampsiaantarcticapoaceaeproizrastaûŝeinaargentinskihostrovah AT ovcharenkoyv anatomičeskaâifunkcionalʹnaâharakteristikalistovoiplastinkideschampsiaantarcticapoaceaeproizrastaûŝeinaargentinskihostrovah AT jadkosi anatomičeskaâifunkcionalʹnaâharakteristikalistovoiplastinkideschampsiaantarcticapoaceaeproizrastaûŝeinaargentinskihostrovah AT ivanenkogf anatomičeskaâifunkcionalʹnaâharakteristikalistovoiplastinkideschampsiaantarcticapoaceaeproizrastaûŝeinaargentinskihostrovah AT loyavv anatomičeskaâifunkcionalʹnaâharakteristikalistovoiplastinkideschampsiaantarcticapoaceaeproizrastaûŝeinaargentinskihostrovah |
| first_indexed |
2025-11-26T16:38:44Z |
| last_indexed |
2025-11-26T16:38:44Z |
| _version_ |
1850628478109483008 |
| fulltext |
143
УКРАЇНСЬКИЙ АНТАРКТИЧНИЙ ЖУРНАЛ
УАЖ, №16, 143—149 (2017)
UDС 581.8:581.45:582.54(99)
ANATOMICAL AND FUNCTIONAL FЕATURES OF DESCHAMPSIA
ANTARCTICA (POACEAE) LEAF BLADE GROWING ON THE ARGENTINE ISLANDS
E. L. Kordyum¹, О. M. Nedukha¹, Y. V. Ovcharenko¹, S. I. Jadko¹, G. F. Ivanenko¹, V. V. Loya²
¹M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska Str., Kyiv,
01601, Ukraine, cellbiol@ukr.net
2M. M. Gryshko National Botanic Garden, National Academy of Sciences of Ukraine, 1 Timiryazevska Str., Kyiv,
01014, Ukraine
Abstract. The objective of the work was to perform the comparative studies of the anatomical structure and reactive oxygen
species (ROS) content in leaves of Deschampsia antarctica plants growing in extreme climatic conditions of Antarctica (Skua
and Galindez Іslands). The leaf anatomy and surface ultrastructure were investigated by the methods of light and scanning
electron microscopy. To determine the localization of monolignines a cytochemical method of dyeing tissues was used. The
ROS content was registered by measuring the spontaneous chemiluminescence (SCL). The obtained results showed the
similarity of leaf anatomical and ultrastructural features in plants collected on Scua and Galindez Islands. The localization of
two monolignines (syringyl and quaiacyl) detected in leaf cell walls was also similar in the investigated plants. Syringyl is
mainly localized in the walls of epidermal cell and quaiacyl is mainly localized in the walls of mesophyll cells and vessels. In
epidermal cell walls, the syringyl relative content exceeded the quaiacyl content 6-8 times. The SCL level in D. аntarctica leaves
is corresponded to mean values of leaf luminescence in other species under the normal conditions. This may indicate the adapta-
tion of species to harsh habitats. In our opinion, it should be paid special attention on the study of D. аntarctica cell metabolism
and its regulation for better understanding the mechanisms of its survival in the conditions of the Maritime Antarctic.
Key words: Deschampsia antarctica, anatomical structure, ultrastructure, lipid peroxidation, lignin, adaptation.
АНАТОМІЧНА І ФУНКЦІОНАЛЬНА ХАРАКТЕРИСТИКА
ЛИСТКОВOЇ ПЛАСТИНКИ DESCHAMPSIA АNTARCTICA (POACEAE), ЩО РОСТЕ НА
АРГЕНТИНСЬКИХ ОСТРОВАХ
Є. Л. Кордюм ¹, О. М. Недуха ¹, Ю. В. Овчаренко¹, С. І. Жадько ¹, Г. Ф. Іваненко¹, В. В. Лоя²
¹Інститут ботаніки імені М. Г. Холодного НАН України, м. Київ, cellbiol@ukr.net
2Національний ботанічний сад імені М. М. Гришка НАН України, м. Київ
Реферат. Метою роботи було проведення порівняльних досліджень анатомічної структури та вмісту активних форм
кисню (АФК) в листках Deschampsia antarctica (Poaceae), що росте в екстремальних кліматичних умовах Антарктики
(острови Скуа і Галіндез). Для досліджень анатомічної структури та ультраструктури поверхні листків використовували
методи світлової та скануючої електронної мікроскопії. Локалізацію монолігнінів визначали за допомогою цитохімічно-
го методу фарбування тканин, вміст АФК в листках – методом реєстрації спонтанної хемілюмінесценції (СХЛ). Резуль-
тати засвідчують ідентичність анатомічної структури та ультраструктури поверхні листків у рослин, зібраних в різних
місцезростаннях. Локалізація в листках двох монолігнінів (сирингіла та гваяцила) в клітинних стінках листків дослідже-
них рослин була також подібною. Встановлено, що сирингіл, в основному локалізований в клітинних стінках епідермісу,
підтримуючи їхню механічну міцність, а гваяцил, що забезпечує гнучкість стінок, локалізований в основному в стінках
клітин мезофілу і судин. Вміст сирингілу в стінках клітин епідермісу перевищував рівень гваяцилу у 6–8 разів. Рівень
СХЛ в листках D. antarctica дорівнював середньому значенню люмінесценції листків інших видів в нормальних умовах.
Можна зробити висновки, що отримані результати можуть бути показниками адаптації цього виду до екстремальних
умов. На нашу думку, посилення уваги до вивчення клітинного метаболізму та його регуляції у рослин D. аntarctica
сприятиме подальшому пізнанню механізмів їхнього виживання в умовах Прибережної Антарктики.
Ключові слова: Deschampsia antarctica, анатомічна структура, ультраструктура, перекисне окислення, лігнін, адаптація.
144
E. L. Kordyum, О. M. Nedukha, Y. V. Ovcharenko, S. I. Jadko, G. F. Ivanenko, V. V. Loya
ANATOMICAL AND FUNCTIONAL FЕATURES OF DESCHAMPSIA
ANTARCTICA (POACEAE) LEAF BLADE GROWING ON THE ARGENTINE ISLANDS
AНАТОМИЧЕСКАЯ И ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА ЛИСТОВОЙ
ПЛАСТИНКИ DESCHAMPSIA АNTARCTICA (POACEAE),
ПРОИЗРАСТАЮЩЕЙ НА АРГЕНТИНСКИХ ОСТРОВАХ
Е. Л. Кордюм¹, Е. М. Недуха ¹, Ю. В. Овчаренко ¹, С. И. Жадько¹, Г. Ф. Иваненко ¹, В. В. Лоя ²
¹Институт ботаники имени Н. Г. Холодного НАН Украины, г. Киев, cellbiol@ukr.net
2Национальный ботанический сад имени Н. Н. Гришко НАН Украины, г. Киев
Реферат. Целью работы было проведение сравнительных исследований анатомической структуры и содержания
активных форм кислорода (АФК) в листьях растений Deschampsia antarctica (Poaceae), произрастающей в экстремаль-
ных климатических условиях Антарктики (острова Скуа и Галиндез). Для исследований анатомии и ультраструктуры
поверхности листьев использовали методы световой и сканирующей электронной микроскопии. Локализацию
монолигнинов определяли с помощью цитохимического метода окрашивания тканей, содержание АФК в листьях
определяли методом регистрации спонтанной хемилюминесценции (СХЛ). Результаты подтверждают идентичность
анатомической структуры и ультраструктуры поверхности листьев у растений, собранных в различных местах их
произрастания. Локализация двух монолигнинов (сирингила и гваяцила) в клеточных стенках листьев исследованных
растений также была подобной. Установлено, что сирингил в основном локализован в клеточных стенках эпидермиса,
поддерживая их механическую прочность, а гваяцил, обеспечивающий гибкость стенок, локализован в основном в
стенках клеток мезофилла и сосудов. Содержание сирингила в стенках эпидермальных клеток превышало содержание
гваяцила в 6–8 раз. Уровень СХЛ в листьях D. аntarctica равнялся среднему значению люминесценции листьев других
растений, растущих в нормальных условиях. Полученные результаты позволяют сделать выводы об адаптации
растений D. аntarctica к экстремальным условиям. По нашему мнению, дальнейшие исследования клеточного
метаболизма и его регуляции у растений D. antarctica углубят представления о механизмах их выживания в
Прибрежной Антарктике.
Ключевые слова: Deschampsia antarctica, анатомическое строение, ультраструктура, перекисное окисление, лигнин,
адаптация.
1. Introduction
Deschampsia antarctica (Poaceae) is the only natural grass species growing in the Antarctic geobotanical
zone (Gielwanowska, Szczuka, 2005). The existence of D. antarctica plants in the severe climatic conditions is
possible owing to certain mechanisms for growth and survival. The studies of leaf anatomy, its surface
ultrastructure, and functioanal activity may help to understand the mechanisms of adaptation of D. antarctica
plants to the extreme environment. At the normal conditions reactive oxygen species (superoxide anion radical,
hydrogen peroxide) are permanently generated in cells and may cause oxidative-destructive effects in plant
cells and perform signalling functions also. The ROS content sharply increases under different stresses creating
a threat of oxidative destruction (Mittler et al., 2004). The activity of antioxidant enzymes, in particular
superoxide dismutase, ascorbate peroxidase, catalase, peroxy redoksin, enchances in response to ROS stressed
increasing, that to a large degree determines plant stability and adaptation (Santos, Rey, 2006; Kolupaev,
Karpets, 2014). The peculiarities of the leaf mesophyll ultrastructure of D. аntarctica (Gielwanowska et al.,
2005; Szczuka et al., 2013) clearly demonstrate the high level of metabolism and production of ATP. ATP is an
universal source of energy in cells of all live organisms. Earlier it was reported that levels of sucrose and
fructans in leaves and roots of D. аntarctica were higher in comparison with other cereals (Zuсiga et al., 1996).
The maximum accumulation of these substances occurred by the end of summer. It was also found the correlation
of an activity of sucrose-phosphate-synthase (SPS) with day duration length and low temperature (Zunica-Feest
et al., 2003). The highest SPS activity and the highest sucrose content in leaves were determined in cold-
acclimated plants under long day. On authors’ opinion such unusually high accumulation of sucrose and
fructose, as one of the protective mechanisms against low temperature, and capacity to rаpid growth during the
short vegetation period has allowed D. аntarctica to adjust to the conditions of the Maritime Antarctic.
2. Materials and methods of research
The specimens of D. antarctica were collected at the Galindez and Scua Islands in March 2016 during the
20th Ukrainian Antarctic expedition (Fig.1).
The content of ROS in leaves of D. antarctica plants was determined by the method of registration of
spontaneous luminescence (SCL) with a chemiluminometer CLMC-01 (Ukraine). The intensity of SCL was measured
in impulses per second per gram of fresh weight (imp/sec/g). Native leaves were placed in the cuvette of a device,
and luminescence was measured in real time (Jadko, 2012).
145
E. L. Kordyum, О. M. Nedukha, Y. V. Ovcharenko, S. I. Jadko, G. F. Ivanenko, V. V. Loya
ANATOMICAL AND FUNCTIONAL FЕATURES OF DESCHAMPSIA
ANTARCTICA (POACEAE) LEAF BLADE GROWING ON THE ARGENTINE ISLANDS
Fig. 1. Scheme of the sites where samples of Deschampsia antarctica (Poaceae) plants were collected (Galindez Island and
Scua Island).
To study the ultrastructure of the leaf surface, segments middle part of leaf blade were fixed in 2%
paraformaldehyde in phosphate buffer, dehydrated in the ethanol series and acetone. The samples were mounted on
tables by the standard technique, sputtered with gold, and examined with a JSM-6060 scanning electron microscope
(JEOL, Japan). Leaf anatomy was studied by using segments of the leaf blade with a size of 0,5 Х 1,0 cm. Leaf
segments were fixed by 2,5 % glutaraldehyde and 1 % OsO4, dehydrated in the ethanol series and acetone, and placed
in the mixture of epoxy resins (epon–araldite) on the generally accepted method. The cross sections (0,5-1,0 µm) were
obtained on an ultramicrotome RMC MTXL (USA), stained with 1 % methylene blue and 0,12 % toluidine blue, and
examined with light microscopes NF and Axioscope (Carl Zeiss, Germany).To determine the distribution and
localization of monolignins used the cytochemical method with staining the samples by solution of 0,1% 2-aminoethyl
ether-biphenyl carboxylic acid. Stained samples of leaf blades were examined with a laser scanning microscope LSM
5 Pascal (Carl Zeiss, Germany) under an excitation wave length of 380 nm and the absorption wave length 430 nm for
quaiacyl; and under excitation wave length of 490 nm and the absorption wave length of 520 nm for syringyl.
3. Results and Discussion
ROS are permanently generated in cells and are under control of the antioxidant system (Mittler et al., 2004;
Dietz, 2008). The main compartments for ROS production in plant leaf photosynthesizing cells are mitochondria,
chloroplasts and peroxysomes (Foyer, Noctor, 2003).
ROS signals are generated in different sites. In different metabolic reactions ROS signals may be combined
to produce a new signal, as well as one signal can play a dominant role showing an epistatic effect (Moller, Sweetlove,
2010). ROS also initiate post-translational modification of proteins, especially by the oxidation of sulfhydryl groups
that leads to the changes in their structure and functions. Free radicals attack also membrane lipids containing
carbon-carbon double bonds, especially polyunsaturated fatty acids. This process is generally known as a process of
lipid peroxidation. The importance of the membrane lipid physical state is evidenced by the fact that lipids may
control the physiological state of a membrane organelle by modifying its biophysical aspects, such as the polarity and
permeability. Lipids also have a key role in biology as signaling molecules (Ayala et al., 2014). It is of interest to
study a trigger role of ROS in the mechanism of epigenetic regulation of gene expression by the changes in histone
146
E. L. Kordyum, О. M. Nedukha, Y. V. Ovcharenko, S. I. Jadko, G. F. Ivanenko, V. V. Loya
ANATOMICAL AND FUNCTIONAL FЕATURES OF DESCHAMPSIA
ANTARCTICA (POACEAE) LEAF BLADE GROWING ON THE ARGENTINE ISLANDS
acetylation (Jadko, 2015). It should be noted that ROS content is well determined by the registration of spontaneous
chemiluminescence (SCL) from live cells, as the increased content of malondialdehyde. The malondialdehyde is one
of final products of lipid peroxidation and it is revealed only at the more late stages of stress action (Jadko, 2012).
The SCL method may be successfully used to study a role of ROS as secondary messengers in the induction/
activation of plant stress-reactions and adaptation to the influence of environmental unfavourable factors. The
intensity of SCL in leaves of plants from the islands Scua and Galindez was 36±4 and 43±4,5 imp/sec/g in the
average, respectively (Fig. 2). The level of SCL in D. аntarctica leave іs corresponded to mean values of leaf
luminescence in the normal conditions, for example, it was 28-33 imp/sec/g in Arabidopsis thaliana, (Jadko, 2012)
and 27- 38 imp/sec/g in Pisum sativum, Zea mays, and Triticum aestivum (Tarusov, Veselovskii,1978). Therefore, the
obtained data may be evidence of D. аntarctica adaptation to the conditions of its habitat.
Fig. 2. The SCL intensity in leaves of Deschampsia antarctica (Poaceae) plants from the islands Scua (S) and Galindez (G).
The leaf surface ultrastructure in plants collected on Scua Island and Galindez Island is identical. The adaxial and
abaxial surfaces of a leaf blade were covered with high cuticular ribs which situated parallel to the longitudinal axis of a
leaf blade. Cuticular ribs on the leaf abaxial surface are almost straight (Fig. 3a). Cuticular ribs on the leaf adaxial surface
were slighty wavy-grained (Fig. 3b). A height of ribs varied from 10 µm to 12 µm, a breadth varies from 4 µm to 6 µm.
a b
Fig. 3. The structure of leaf abaxial (a) and adaxial (b) surface in Deschampsia antarctica (Poaceae).
The similarity of morphological and anatomical traits of leaves in D. antarctica plants collected on the islands
Scua and Galindez was shown (Fig.4 and 5). Oval cells of the adaxial epidermis were covered with the cuticle layer.
Dumbbell stomata were situated at the epidermis level. The density of stomata was higher at the leaf abaxial
surface than at the adaxial ones. Epidermal cells adjoined to guard cells were situated parallel to the leaf longitudinal
axis and do not differ from the constitutive ones. Undifferentiated mesophyll consisted of thin-wall, isodiametrical
and loosely located cells. A characteristic feature of all investigated samples was the presence of large gas spaces in
the mesophyll (aerenchyma). Chloroplasts were situated on the periphery of mesophyll cells.
147
E. L. Kordyum, О. M. Nedukha, Y. V. Ovcharenko, S. I. Jadko, G. F. Ivanenko, V. V. Loya
ANATOMICAL AND FUNCTIONAL FЕATURES OF DESCHAMPSIA
ANTARCTICA (POACEAE) LEAF BLADE GROWING ON THE ARGENTINE ISLANDS
Fig. 4. Cross section of a leaf blade of Deschampsia antarctica (Poaceae) from Scua Island. Abbreviations: AdS –adaxial
surface, AbS –abaxial surface, CB –central bundle, LB –lateral bundle, S –stomate, GS – gas space, SC–sheath cell.
Fig. 5. Cross section of a leaf blade of Deschampsia antarctica (Poaceae) from Galindez Island
(abbreviations are the same as on the Fig. 4).
The leaf conducting system consisted of three closed vascular bundles: one central and two lateral, containing
the xylem and phloem elements. Bundles were surrounded by tightly located sheath cells. The sheath cells separated
them from mesophyll cells. Collenchyme fibers adjoining to the epidermis give the mechanical strength to a leaf.
Folding leaf blade may protect stomata in the conditions of low temperature and elevated humidity, diminishes a rate
of transpiration and supports gas exchange.
148
E. L. Kordyum, О. M. Nedukha, Y. V. Ovcharenko, S. I. Jadko, G. F. Ivanenko, V. V. Loya
ANATOMICAL AND FUNCTIONAL FЕATURES OF DESCHAMPSIA
ANTARCTICA (POACEAE) LEAF BLADE GROWING ON THE ARGENTINE ISLANDS
It was shown that branches of the panicle were downy. They were covered with simple unbranched trichomes
(Fig. 6). An average length of trichome was 100 µm, an average breadth in its basis was 40 µm, the distance between
trichomes was 80 – 200 µm and an average density per 1 mm 2 was ≈ 72.
а b
Fig. 6. Downy branches of the panicle of Deschampsia antarctica (Poaceae): a – general view, b – trichome.
The presence of two monolignins (syringyl and quaiacyl) were revealed in leaf cell walls using the cytochemical
methods and confocal microscopy. It was established that syringyl is mainly located in epidermal cell walls supporting
their mechanical strength, and quaiacyl is mainly located in walls of mesophyll cells and vessels in conducting
bundles providing flexibility of walls (Fig. 7). The relative content of syringyl in epidermal cell walls exceeds the
relative content of quaiacyl in 6-8 times.
Fig. 7. Fluorescence of lignin in leaf cell walls of Deschampsia antarctica (Poaceae) after staining with 0.1% 2-aminoethyl
ether-biphenyl carboxylic acid (syringyl fluoresces with blue color, quaiacyl – with green color,
red color –autofluorescence of chlorophyll).
4. Conclusions
The morphological and anatomical traits of D. antarctica plants leaves investigated by us and collected on the
islands Scua and Galindez are similar to plants leaves characteristics of the species from the other regions of Maritime
Antarctic (Romero et al., 1999; Gielwanowska, Szczuka, Bednara et al., 2005 Szczuka et al., 2013). The high relative
content of monolignin syringyl in epidermal cell walls, especially of the abaxial epidermis was determined for the
first time. It jointly with cuticular ribs provides the mechanical strength of leaves, as well as the protection from
surplus penetration of water. The normal level of SCL in leaves of investigated plants may indicate their adaptation
149
E. L. Kordyum, О. M. Nedukha, Y. V. Ovcharenko, S. I. Jadko, G. F. Ivanenko, V. V. Loya
ANATOMICAL AND FUNCTIONAL FЕATURES OF DESCHAMPSIA
ANTARCTICA (POACEAE) LEAF BLADE GROWING ON THE ARGENTINE ISLANDS
to the environment. The literature data reported the genetic variability and phenotypic plasticity of D. antarctica
populations (Romero et al., 1999; Gielwanowska, Szczuka, 2005; Gielwanowska et al., 2005; Chwedorzewska et
al., 2008; Szczuka et al., 2013; Amosova et al., 2015), while a search of any obvious unique or specialised adaptations
in this species to the harsh conditions of the Maritime Antarctic did not give positive results. In addition, the first
performed investigations of allelopatic properties of the soil samples collected under mosses and under mosses with
D. antarctica plants on the islands Scua and Galindez, showed the favorable conditions for plant growth. The
obtained results may be considered as a good example of coexistance of D. antarctica plants and mosses for survival
in the harsh habitats. Therefore, іn our opinion, a special attention should be paid to the study of cell metabolism and
its regulation, functioning of energetic organelles – chloroplasts and mitochondria and their interaction, and epigenetic
regulation in gene expression also for deeper understanding the structural and functional organization of D. antarctica
plants providing their growth and fruiting in the conditions of the Maritime Antarctic.
5. Acknowledgements
The authors are grateful to the State Institution National Antarctic Scientific Center of the Ministry of
Education and Science of Ukraine for providing samples of Antarctic vascular plants.
6. References
1. Amosova, A. V., Bolsheva, N. L., Samatadze, T. E., Twardovska, M. O., Svyatoslav, A., Zoshchuk, I.O., Ba-
daeva, E. D., Kunakh, V. A., Muravenko, O.V. 2015. Molecular cytogenetic analysis of Deschampsia antarctica Desv.
(Poaceae), Maritime Antarctic. PLOS. http://dx.doi.org/10.1371/journal.pone.0138878
2. Ayala, A., Muсoz, M.F., Argüelles, S. 2014. Lipid peroxidation: production, metabolism, and signaling mech-
anisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity. ID 360438. http://
dx.doi.org/10.1155/2014/360438
3. Chwedorzewska, K. J., Gielwanowska, I., Szczuka, E., Bochenek, A. 2008. High anatomical and low genetic
di-versity in Deschampsia antarctica Desv. from King George Island, the Antarctic. Pol. Polar Res., 29, 377–386.
4. Dietz, K.-J. 2008. Redox signal integration: from stimulus to networks and genes. Physiol. Plant.,133, 459–468.
5. Foyer, C. H., Noctor, N. 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts,
peroxisomes and mitochondria. Physiol. Plant.,119, 355–364.
6. Gielwanowska, I., Szczuka, E. 2005. New ultrastructural features of organelles in leaf cells of Deschampsia
antarctica Desv. Polar Biol., 28, 951–955.
7. Gielwanowska, I., Szczuka, E., Bednara, J., Gorecki, R. 2005. Anatomical features and ultrastructure of Des-
champsia antarctica (Poaceae) leaves from different growing habitats. Ann. Bot., 96, 1109–1119.
8. Jadko, S.I. 2012. Ranneye uvelicheniye soderzhaniya aktivnykh form kisloroda I aktivnosti askorbat peroksi-da-
zy I katalazy v list’yakh Аrabidopsis thalianapri osmoticheskom i oksidativnom stessakh [Early increasing the content of
reactive oxygen species and the activity of ascorbate peroxidase and catalase in leaves of Аrabidopsis thalianaplants under
osmotic and oxidative stresses]. Visnyk Kharkiv. natsionalnogo agrarnogo universytetu. Seriya Bioilogiya.[The Bulletin of
Kharkiv National Agrarian University. Ser. Biology]. 3(27), 58–64.
9. Jadko, S. I. 2015. Histone deacetylase activity and reactive oxygen species content in the tissue culture of Ara-
bi-dopsis thalianaunder normal conditions and development of acute osmotic stress. Ukr. Biochem. J., 87, 57 – 62.
10. Kolupaev, Iu.E., Karpets ,Iu.V. 2014. Aktyvnye formy kisloroda i stressovyi syhnalynh u rastenyi [Reactive
oxygen species and stress signaling in plants]. Ukr. Biochem. J., 86 (4), 18–35.
11. Mittler R., Vanderauwera S., Gollery M., Breusegem F.V. 2004. Reactive oxygen gene network of plants. Trends
Plant Sci., 9, 490–498.
12. Moller, I. M., Sweetlove, L. J. 2010. ROS signaling-specificity is required. Trends Plant Sci., 15, 370–374.
13. Romeo, M., Casanova, A., Iturra, G., Reyes ,A., Montenegro, G., Alberdi, M. 1999. Leaf anatomy of Deschamp-
sia antarctica (Poaceae) from the Maritime Antarctic and its plastic response to changes in the growth conditions. Revista
Chilena de Historia Natural, 72, 411–425.
14. Santos, C.V., Rey, P. 2006. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci.,
11, 329–334.
15. Szczuka, E., Gielwanowska, I., Leszczuk, A., Domaciuk, M., Pietrusiewicz, J., Bednara, J. 2013. Specific ultra-
struc-ture of the leaf mesophyll cells of Deschampsia antarctica Desv. (Poaceae). Ann. Univ. Mariae-Curie-Sklodowska,
sectio C – Biologia, 68, 25–33.
16. Tarusov B. N., Veselovskii V.A. 1978. Sverkhslabye svechenyia rastenyi i ikh prykladnoe znachenie. Moskva:
Izdatelsvo MHU, 151.
17. Zuсiga, G. E., Alberdi, M., Corcuerm, L. 1996. Non-structural carbohydrates in Deschampsia antarctica Desv.
from South Shetland islands, Maritime Antarctic. Environ. Experim. Botany, 36. 4., 393–399.
18. Zunica-Feest, A., Inostroza, P., Vega, M., Bravo, L., Corcuera, L.J. 2003. Sugars and enzyme activity in the grass
Deschampsia antarctica. Antarctic Science, 15, 483–491.
|