On the Class of Einstein Exponential-Type Finsler Metrics

In this paper, a special class of Finsler metrics, the so-called (α, β)- metrics, which are defined by F = αφ(s), where α is a Riemannian metric and β is a 1-form, is studied. First we show that the class of almost regular metrics obtained by Shen is Einstein if and only if it reduces to the class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2018
Hauptverfasser: Akbar Tayebi, Ali Nankali, Behzad Najafi
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/145861
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the Class of Einstein Exponential-Type Finsler Metrics / Akbar Tayebi, Ali Nankali, Behzad Najafi // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 1. — С. 100-114. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In this paper, a special class of Finsler metrics, the so-called (α, β)- metrics, which are defined by F = αφ(s), where α is a Riemannian metric and β is a 1-form, is studied. First we show that the class of almost regular metrics obtained by Shen is Einstein if and only if it reduces to the class of Berwald metrics. In this case, the Riemannian metrics are Ricci-flat. Then we prove that an exponential metric is Einstein if and only if it is Ricci-flat. У статтi вивчається спецiальний клас фiнслерових метрик, що називаються (α, β)-метриками, якi визначаються формулою F = F = αφ(s), де α - рiманова метрика, а β - 1-форма. Спочатку ми показуємо, що клас майже регулярних метрик, отриманий Шеном, є ейнштейновим тодi i тiльки тодi, коли вiн зводиться до класу метрик Бервальда. В цьому випадку метрики є Рiччi-пласкими. Потiм ми доводимо, що експоненцiальна метрика є ейнштейновою тодi i тiльки тодi, коли вона Рiччi-пласка.
ISSN:1812-9471