Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications
Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understanding of bonding arrangements at propagating surface acoustic-wave velocities. These velocities are deduced from the analysis of the topped acoustic signatu...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2018
|
| Series: | Металлофизика и новейшие технологии |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/145922 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications / Y. Al-Sayad, Z. Hadjoub, A. Doghmane // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 3. — С. 411-421. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understanding of bonding arrangements at propagating surface acoustic-wave velocities. These velocities are deduced from the analysis of the topped acoustic signatures’ curves obtained by recording the output signal VV. We used simulation of acoustic microscopy to measure Rayleigh velocities. The acoustic parameters were determined as follow: longitudinal (VL), transverse (VT), and Rayleigh (VR) velocities from 1139 ms⁻¹ to 285 ms⁻¹, from 87 ms⁻¹ to 143 ms⁻¹, and from 562 ms⁻¹ to 136 ms⁻¹, respectively, for porosity from 60% to 75%. |
|---|