Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications
Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understanding of bonding arrangements at propagating surface acoustic-wave velocities. These velocities are deduced from the analysis of the topped acoustic signatu...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2018
|
| Назва видання: | Металлофизика и новейшие технологии |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/145922 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications / Y. Al-Sayad, Z. Hadjoub, A. Doghmane // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 3. — С. 411-421. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-145922 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1459222025-02-09T13:27:33Z Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications Характеризация скоростей одиночных поверхностных акустических волн (ПАВ) сплавов Ti–6Al–4V как функции пористости согласно моделированию сканирующей акустической микроскопии (САМ) для приложений Характеризація швидкостей одиничних поверхневих акустичних хвиль (ПАХ) стопів Ti–6Al–4V як функції поруватости за моделюванням сканувальної акустичної мікроскопії (САМ) для застосувань Al-Sayad, Y. Hadjoub, Z. Doghmane, A. Физико-технические основы эксперимента и диагностики Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understanding of bonding arrangements at propagating surface acoustic-wave velocities. These velocities are deduced from the analysis of the topped acoustic signatures’ curves obtained by recording the output signal VV. We used simulation of acoustic microscopy to measure Rayleigh velocities. The acoustic parameters were determined as follow: longitudinal (VL), transverse (VT), and Rayleigh (VR) velocities from 1139 ms⁻¹ to 285 ms⁻¹, from 87 ms⁻¹ to 143 ms⁻¹, and from 562 ms⁻¹ to 136 ms⁻¹, respectively, for porosity from 60% to 75%. Режимы волн Рэлея зависят от пористости сплава Ti–6Al–4V, которая составляет 60–75%. Это очень важно для многих приложений и понимания связующих устройств при распространении поверхностных акустических волн. Скорости определялись с помощью анализа усечённых кривых акустических характеристик, полученных путём регистрации выходного сигнала VV. Моделированием поверхностных акустических волн измерялись скорости Рэлея. Определены акустические параметры: продольные (VL), поперечные (VT) скорости и скорость Рэлея (VR) — от 1139 мс⁻¹ до 285 мс⁻¹, от 87 мс⁻¹ до 143 мс⁻¹ и от 562 мс⁻¹ до 136 мс⁻¹ соответственно (при пористости от 60% до 75%). Режими Релейових хвиль залежать від пористости стопу Ti–6Al–4V, яка становить 60–75%. Це дуже важливо для багатьох застосувань і розуміння сполучних пристроїв при поширенні поверхневих акустичних хвиль. Швидкості визначалися за допомогою аналізи усічених кривих акустичних характеристик, одержаних шляхом реєстрації вихідного сиґналу VV. Моделюванням поверхневих акустичних хвиль вимірювалися Релейові швидкості. Визначено акустичні параметри: поздовжні (VL), поперечні (VT) швидкості та швидкість Релея (VR) — від 1139 мс⁻¹ до 285 мс⁻¹, від 87 мс⁻¹ до 143 мс⁻¹ та від 562 мс⁻¹ до 136 мс⁻¹ відповідно (при пористості від 60% до 75%). 2018 Article Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications / Y. Al-Sayad, Z. Hadjoub, A. Doghmane // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 3. — С. 411-421. — Бібліогр.: 20 назв. — англ. 1024-1809 PACS: 46.40.Cd, 61.43.Gt, 62.20.D-, 62.30.+d, 68.37.Tj, 81.05.Rm, 81.70.Cv DOI: 10.15407/mfint.40.03.0411 https://nasplib.isofts.kiev.ua/handle/123456789/145922 en Металлофизика и новейшие технологии application/pdf Інститут металофізики ім. Г.В. Курдюмова НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Физико-технические основы эксперимента и диагностики Физико-технические основы эксперимента и диагностики |
| spellingShingle |
Физико-технические основы эксперимента и диагностики Физико-технические основы эксперимента и диагностики Al-Sayad, Y. Hadjoub, Z. Doghmane, A. Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications Металлофизика и новейшие технологии |
| description |
Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understanding of bonding arrangements at propagating surface acoustic-wave velocities. These velocities are deduced from the analysis of the topped acoustic signatures’ curves obtained by recording the output signal VV. We used simulation of acoustic microscopy to measure Rayleigh velocities. The acoustic parameters were determined as follow: longitudinal (VL), transverse (VT), and Rayleigh (VR) velocities from 1139 ms⁻¹ to 285 ms⁻¹, from 87 ms⁻¹ to 143 ms⁻¹, and from 562 ms⁻¹ to 136 ms⁻¹, respectively, for porosity from 60% to 75%. |
| format |
Article |
| author |
Al-Sayad, Y. Hadjoub, Z. Doghmane, A. |
| author_facet |
Al-Sayad, Y. Hadjoub, Z. Doghmane, A. |
| author_sort |
Al-Sayad, Y. |
| title |
Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications |
| title_short |
Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications |
| title_full |
Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications |
| title_fullStr |
Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications |
| title_full_unstemmed |
Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications |
| title_sort |
characterization of single saw velocities of ti–6al–4v alloy as a function of porosity by sam simulation for applications |
| publisher |
Інститут металофізики ім. Г.В. Курдюмова НАН України |
| publishDate |
2018 |
| topic_facet |
Физико-технические основы эксперимента и диагностики |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/145922 |
| citation_txt |
Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications / Y. Al-Sayad, Z. Hadjoub, A. Doghmane // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 3. — С. 411-421. — Бібліогр.: 20 назв. — англ. |
| series |
Металлофизика и новейшие технологии |
| work_keys_str_mv |
AT alsayady characterizationofsinglesawvelocitiesofti6al4valloyasafunctionofporositybysamsimulationforapplications AT hadjoubz characterizationofsinglesawvelocitiesofti6al4valloyasafunctionofporositybysamsimulationforapplications AT doghmanea characterizationofsinglesawvelocitiesofti6al4valloyasafunctionofporositybysamsimulationforapplications AT alsayady harakterizaciâskorostejodinočnyhpoverhnostnyhakustičeskihvolnpavsplavovti6al4vkakfunkciiporistostisoglasnomodelirovaniûskaniruûŝejakustičeskojmikroskopiisamdlâpriloženij AT hadjoubz harakterizaciâskorostejodinočnyhpoverhnostnyhakustičeskihvolnpavsplavovti6al4vkakfunkciiporistostisoglasnomodelirovaniûskaniruûŝejakustičeskojmikroskopiisamdlâpriloženij AT doghmanea harakterizaciâskorostejodinočnyhpoverhnostnyhakustičeskihvolnpavsplavovti6al4vkakfunkciiporistostisoglasnomodelirovaniûskaniruûŝejakustičeskojmikroskopiisamdlâpriloženij AT alsayady harakterizacíâšvidkostejodiničnihpoverhnevihakustičnihhvilʹpahstopívti6al4vâkfunkcííporuvatostizamodelûvannâmskanuvalʹnoíakustičnoímíkroskopíísamdlâzastosuvanʹ AT hadjoubz harakterizacíâšvidkostejodiničnihpoverhnevihakustičnihhvilʹpahstopívti6al4vâkfunkcííporuvatostizamodelûvannâmskanuvalʹnoíakustičnoímíkroskopíísamdlâzastosuvanʹ AT doghmanea harakterizacíâšvidkostejodiničnihpoverhnevihakustičnihhvilʹpahstopívti6al4vâkfunkcííporuvatostizamodelûvannâmskanuvalʹnoíakustičnoímíkroskopíísamdlâzastosuvanʹ |
| first_indexed |
2025-11-26T05:06:59Z |
| last_indexed |
2025-11-26T05:06:59Z |
| _version_ |
1849828181587001344 |
| fulltext |
411
PHYSICAL AND TECHNICAL BASIS OF EXPERIMENT
AND DIAGNOSTICS
PACS numbers: 46.40.Cd, 61.43.Gt, 62.20.D-, 62.30.+d, 68.37.Tj, 81.05.Rm, 81.70.Cv
Characterization of Single SAW Velocities of Ti–6Al–4V Alloy
as a Function of Porosity by SAM Simulation for Applications
Y. Al-Sayad, Z. Hadjoub, and A. Doghmane
Badji Mokhtar University
Laboratory of Semiconductors, Department of Physics, Faculty of Sciences,
BO 12, CP 23000 Annaba, Algeria
Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities
between 60–75%. It is very important in many applications and understand-
ing of bonding arrangements at propagating surface acoustic-wave veloci-
ties. These velocities are deduced from the analysis of the topped acoustic
signatures’ curves obtained by recording the output signal V. We used simu-
lation of acoustic microscopy to measure Rayleigh velocities. The acoustic
parameters were determined as follow: longitudinal (VL), transverse (VT), and
Rayleigh (VR) velocities from 1139 ms 1
to 285 ms 1, from 87 ms 1
to 143 ms 1,
and from 562 ms 1
to 136 ms 1, respectively, for porosity from 60% to 75%.
Key words: Ti–6Al–4V alloy, Rayleigh velocities, scanning acoustic micros-
copy (SAM), Young’s modulus, surface acoustic waves (SAW) simulation.
Режими Релейових хвиль залежать від пористости стопу Ti–6Al–4V, яка
становить 60–75%. Це дуже важливо для багатьох застосувань і розуміння
сполучних пристроїв при поширенні поверхневих акустичних хвиль.
Швидкості визначалися за допомогою аналізи усічених кривих акустичних
характеристик, одержаних шляхом реєстрації вихідного сиґналу V. Моде-
люванням поверхневих акустичних хвиль вимірювалися Релейові швид-
кості. Визначено акустичні параметри: поздовжні (VL), поперечні (VT) шви-
дкості та швидкість Релея (VR) — від 1139 мс 1
до 285 мс 1, від 87 мс 1
до 143
мс 1
та від 562 мс 1
до 136 мс 1
відповідно (при пористості від 60% до 75%).
Corresponding author: Y. Al-Sayad
E-mail: yahya_sayaad@yahoo.com
Citation: Y. Al-Sayad, Z. Hadjoub, and A. Doghmane, Characterization of Single SAW
Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for
Applications, Metallofiz. Noveishie Tekhnol., 40, No. 3: 411–421 (2018),
DOI: 10.15407/mfint.40.03.0411.
Ìåòàëëîôèç. íîâåéøèå òåõíîë. / Metallofiz. Noveishie Tekhnol.
2018, т. 40, № 3, сс. 411–421 / DOI: 10.15407/mfint.40.03.0411
Îòòèñêè äîñòóïíû íåïîñðåäñòâåííî îò èçäàòåëÿ
Ôîòîêîïèðîâàíèå ðàçðåøåíî òîëüêî
â ñîîòâåòñòâèè ñ ëèöåíçèåé
2018 ÈÌÔ (Èíñòèòóò ìåòàëëîôèçèêè
èì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàèíû)
Íàïå÷àòàíî â Óêðàèíå.
https://doi.org/10.15407/mfint.40.03.0411
https://doi.org/10.15407/mfint.40.03.0411
412 Y. AL-SAYAD, Z. HADJOUB, and A. DOGHMANE
Ключові слова: стоп Ti–6Al–4V, Релейова швидкість, акустична мікрос-
копія, модуль Юнґа, моделювання поверхневих акустичних хвиль.
Режимы волн Рэлея зависят от пористости сплава Ti–6Al–4V, которая
составляет 60–75%. Это очень важно для многих приложений и понима-
ния связующих устройств при распространении поверхностных акусти-
ческих волн. Скорости определялись с помощью анализа усечённых кри-
вых акустических характеристик, полученных путём регистрации вы-
ходного сигнала V. Моделированием поверхностных акустических волн
измерялись скорости Рэлея. Определены акустические параметры: про-
дольные (VL), поперечные (VT) скорости и скорость Рэлея (VR) — от 1139
мс 1
до 285 мс 1, от 87 мс 1
до 143 мс 1
и от 562 мс 1
до 136 мс 1
соответ-
ственно (при пористости от 60% до 75%).
Ключевые слова: сплав Ti–6Al–4V, скорость Рэлея, акустическая микро-
скопия, модуль Юнга, моделирование поверхностных акустических волн.
(Received November 24, 2017)
1. INTRODUCTION
1.1. Materials and Background
The mineralogist and chemist, William Gregor in 1791, first discov-
ered titanium. Four years later, Martin Klaproth, based on the story of
the Greek mythological children, the Titans, named the element as ti-
tanium. After that, more than 100 years were necessary to isolate the
titanium metal from its oxide. Finally, the first alloys, as well as the
popular Ti–6Al–4V alloy, were developed in the late 1940. The Ti–
6Al–4V alloy is the most common used alloy among the commercially
available titanium alloys. The reason for this success is the good bal-
ance of its properties and the intensive development and testing of this
alloy during the approximately last 60 years [1]. In the present work,
the behaviour of Ti–6Al–4V components fabricated by the using sev-
eral process techniques is investigated in details. Experiments were
conducted in a challenge to determine the influence of critical features
such as surface quality porosity on the behaviour of Ti–6Al–4V alloy
[2]. In order to identify mechanism, detailed examination of the
changes of dynamic SAW velocities for vary application was carried
out. In a second step, different porosities, as they seem to us, change
dynamics of different elasticity-moduli values and type of surface
acoustic waves’ values. Configurations are described in terms of acous-
tic wave velocities (AWV) to understand the influence of porosities on
mechanical properties of Ti6Al4V alloy by using process techniques to
fabricate porous to reduce porosity. Porous Ti–6Al–4V alloy materials
are used successfully with porosities’ ranges from 60% to 75% under
CHARACTERIZATION OF SINGLE SAW VELOCITIES OF Ti–6Al–4V ALLOY 413
compaction pressures in the range from 100 to 450 MPa. Ti–6Al–4V
foam is produced by Space Holder Technique in powder metallurgy at
temperature 1080 C with particle size of 400 m [3]. Ti–6Al–4V alloy
powders of less than 78 m size with a nominal size of 58 m were used
in the experiments. The powders were irregular in shape and conform
to ASTM 1580-01. As a space holder material, carbamide, also named
urea, was chosen due to its advantages of shape and ease of removal
prior to sintering spherical carbamide particles sieved to the size range
of 0.6–1.0 mm.
2. THEORETICAL DETAILS
2.1. Determination of Acoustic Wave Velocities (AWV)
Rayleigh waves are a type of elastic surface wave that propagate on sol-
ids. They are also produced in materials by acoustic transducers, and
are used in non-destructive testing for detecting defects. They are con-
fined to within the wavelength or so of the surface, along which they
propagate. They are also distinct from longitudinal and shear bulk
acoustic waves (BAW) modes, which propagate independently at dif-
ferent velocities. In Rayleigh waves, there is a superposition of longi-
tudinal and shear motions, which are intimately coupled, and they
propagate together at a common velocity VR [4]. Study of surface
acoustic waves started back in 1887 when Lord Rayleigh first proposed
[5] their existence. Surface acoustic waves (SAW) are modes of propa-
gation of elastic energy along the surface of a solid, whose displace-
ment amplitudes undergo exponential decay beneath this surface. Typ-
ically, almost all energy is localised within the depth of two wave-
lengths. Interest in surface acoustic waves has grown since Rayleigh’s
discovery. The many device applications utilising ultrasonics lead to a
resurgence of interest in surface acoustic waves in the late 1960s, in-
cluding ultrasonic detection of surface flaws [6] and ultrasonic delay
lines [7]. Early transducer devices utilising SAWs on piezoelectric
crystals [8] emerged around the same time, whilst theoretical consid-
erations of the surface wave problem to include piezoelectric effects
was firstly studied by Tseng [9, 10]. Further interest resulted from the
multitude of signal processing applications available utilizing surface
acoustic waves partly because the character of the wave can be changed
in transit [11] as well as the fact the wave can be guided [12, 13] and
even amplified [14].
In this study, the acoustic wave velocities (AWV) are studied. Using
Scanning Acoustic Microscopy (SAM) simulation, different velocity
values will be calculated when impacted to porosity on these velocities.
That allows us to make use of them as possibility as making them in the
engineering and architectural and medical applications.
http://en.wikipedia.org/wiki/Surface_wave
http://en.wikipedia.org/wiki/Interdigital_transducer
http://en.wikipedia.org/wiki/Non-destructive_testing
414 Y. AL-SAYAD, Z. HADJOUB, and A. DOGHMANE
2.2. SAM Principle
Scanning Acoustic Microscopy is a non-invasive imaging technique is
based on ultrasound with assets of a similar resolution as having the
light microscopy [15]. It studies dynamics to measure acoustic wave
velocities (AWV) by SAM devices widely used in this study a frequency
due to their stability. SAM is a non-destructive analytical tool for me-
chanical properties’ investigations of bulk materials as well as alloys
[16] that is the known dispersion behaviour of the dependence of the
surface acoustic wave. According to SAW, velocity values in alloys’
structures show us multiphenomena as Rayleigh velocity and elastic
properties. However, let us appear the work principle of SAM. The
simulations were carried out in the case of SAM under the following
conditions: half-lens opening angle n 50 , frequency f 140 MHz,
and properties of coupling liquid Freon whose density, 1570
Kg/m3, and longitudinal velocity of liquid, Vliq 716 m s 1, are summa-
rised in tables below as well as different substrates with several porosi-
ties of Ti–6Al–4V alloy [17] (Fig. 1). Appearing SAM at the work prin-
ciple is considered for specific mode detection.
3. RESULTS AND DISCUSSION
3.1. Fast Fourier Curves
The most important that was studied is scanning acoustic microscopy
technique when acoustic waves downfall on material in the case these
Ti–6Al–4V alloy materials through them coupling. Liquid as Freon,
which properties have been cleared previously.
Acoustic waves work strikes material molecule mechanism move va-
riety velocities, the most importantly, velocity is Rayleigh velocities
Fig. 1. Representation of a scanning acoustic microscope.
CHARACTERIZATION OF SINGLE SAW VELOCITIES OF Ti–6Al–4V ALLOY 415
measured from through waves reflective from Ti–6Al–4V alloy mate-
rials to lens which is the image as energy outer is recorded as the out-
put voltage V(z), which sets following relationship [18]:
V(z) R( )P2( )ei2kzcos cos sin d , (1)
where is the angle between a wave vector (k) and the lens axis (z),
P2( ) is the lens pupil function, and R( ) is the reflection function of
the Ti–6Al–4V alloy material. This output voltage V(z) depends on the
distance (z) between lens and Ti–6Al–4V alloy material, which is re-
flective. As noted previously, reflective acoustic waves get overlap for
these acoustic waves as a result of constructive and destructive inter-
ference between different propagating and treatment of periodic V(z)
curves by the fast Fourier transform (FFT). Rayleigh velocity (VR) is
determined from the principal peaks of the FFT via the following rela-
tionship [19]:
VR Vliq/{1 [1 Vliq/(2f z)]2}1/2, (2)
where Vliq is the velocity in the coupling liquid, f is the operating fre-
quency, and z is the period between two successive minima (or two
successive maxima) in the V(z) periodic response. The FFT peaks con-
sist of valuable minor and values great the petition also. This one spec-
trum changes factors affecting in change arrangement of Ti–6Al–4V
alloy materials in our study. They porosity are changed from atomic
ranking to Ti–6Al–4V alloy materials increased porosity and note
changes in interfered waves, which are reflected from Ti–6Al–4V alloy
material clarified in spectra. However, this one change happened slow-
ly when approaching porosity to up 75%. We can say that effect poros-
ity to change characteristics of Ti–6Al–4V alloys from through mole-
cules drift of the specimen and convergence for some, which shows
Rayleigh velocities and is referred by pointer. In Figure 2, Rayleigh
velocities change, whenever changed porous Ti–6Al–4V alloys will
recognize as a function of porosity.
3.2. Elastic Moduli
Mechanical properties such as Young’s modulus (E) determined from
curves of porous Ti–6Al–4V alloys [3] are presented in Table 1 for
samples containing minimum and maximum amount of porosities. As
expected, mechanical properties of porous Ti–6Al–4V samples are bet-
ter than the porous titanium samples in the same porosity range. In
this study, elastic properties of materials with density 4430 kg/m3
and Poisson ratio, 0.325 [3], can be expressed in terms of independ-
ent parameters, shear modulus (G), bulk modulus (B) [20], and
416 Y. AL-SAYAD, Z. HADJOUB, and A. DOGHMANE
Young’s modulus, as follow:
G E/[2( 1)], (3)
B EG/[3(3G E)], (4)
VL VT[(E 4G)/(E 3G)]1/2, (5)
VT /G , (6)
for several porosities as in Table 1. Differences in porosity characteris-
tics and the number contacts formed before and during porosity may be
the reason of revealed difference. As higher porosity contribute to the
decrease in elastic moduli of Ti–6Al–4V alloys, and for porosity in-
crease, elastic moduli decrease occurs. This effect is more evident in
TABLE 1. Young’s modulus, shear modulus, and bulk modulus values for
minimum and maximum porosities of Ti–6Al–4V alloys.
Porosity, %
Experimental Calculated
, kg/m3 E, GPa B, GPa G, GPa
61
4430
3.8
0.325
4 1.4
62.08 3.55 3.38 1.34
63.3 2 1.86 0.74
65.7 1.1 1.1 0.42
70.6 0.6 0.6 0.23
71.6 0.50 0.5 0.19
75 0.25 0.24 0.09
75.3 0.23 0.22 0.087
Fig. 2. FFT spectra with rays number of Ti–6Al–4V alloys at different porosi-
ties.
CHARACTERIZATION OF SINGLE SAW VELOCITIES OF Ti–6Al–4V ALLOY 417
porosity of Ti–6Al–4V alloys having elastic moduli values by 75.3%
lower than that of ones in the same porosity range.
3.3. Measurable Acoustic Velocities of Ti–6Al–4V Alloys as a Function
of Porosity
The treatment resulting fast Fourier transform (FFT) from the use of
scanning acoustic microscopy simulation software to a conclusion Ray-
leigh velocities VR, which is characterized by a large spectrum consist-
ing of one wide peaks (Fig. 2), by measuring the output response V, fol-
lowing relationship (2). The peak consistent to the Rayleigh mode ap-
pears for all porosities 60% to 75%. The magnitude of VR peaks is de-
clining with increase of the porosities of Ti–6Al–4V alloys after calcu-
lation of reflection coefficient, R( ), and acoustic material, V(z), the
characteristics of highly porous materials is agreed with same low ve-
locity values via clearly Table 2. We were able to deduce the depend-
ence of Rayleigh velocities, VR, of Ti–6Al–4V alloys. After FFT analy-
sis leads to the calculation of longitudinal (VL) and transversal (VT)
values by Eq. (5) and (6) as in Table 2; such high values are impossible
to characterize this material with effective porosities creation use of
former relations between SAW velocity and porosity. To verify this
relation, it is necessary to select the best slower velocity than well-
investigated material to application. Relationship between longitudi-
nal velocities, transverse velocities, and Rayleigh velocities with low
porosities of Ti–6Al–4V alloys for application due to possible change
of physical alloys and the relationship between the changed porosity
due to creation methods applied. The quantification of the results via
computer fitting all porosity of Ti–6Al–4V alloys in this part takes an
exponential dependence:
TABLE 2. Calculated and experimental SAW velocity (VR,VL, and VT) values
for minimum and maximum porosities of Ti–6Al–4V alloys.
Porosity, %
Experimental Calculated
, kg/m3 VR, m/s VL, m/s VT, m/s
61
4430
0.325
3.8 1139 557
62.08 3.55 1080 550
63.3 2 802 409
65.7 1.1 612 308
70.6 0.6 452 228
71.6 0.50 412 207
75 0.25 285 143
75.3 0.23 275 140
418 Y. AL-SAYAD, Z. HADJOUB, and A. DOGHMANE
SAW velocities (m/s) V0 e 1/R
0
(Porosity,%), (7)
where the relationship between porosities and surface acoustic wave
velocities of Ti–6Al–4V alloys are expositional function V V0 e 1/R
0
[m/s] of porosity [%]. V0 VL0 ,VT0, or VR0, and are parameters of the
Exp. Dec. curve fit model and R
2
is regression line. V is the velocities of
the porous material. Dynamic method was used to determine the SAW
velocities of Ti–6Al–4V alloys. The best fitting curves for SAW veloci-
ties’ data of samples in the present study give Eq. (7) for Ti–6Al–4V
alloy samples. We can give general form equation to understand the
relation porosity 60% to 75% with SAW velocities as Eq. (7).
It is clear that the linear dependence is obtained in all cases for slope
changes with every kind of SAW velocity curves (Fig. 3). In studies,
variation of relative mechanical property with small porosity (P, %) of
samples has been shown to obey the relation. Use of porosity content as
a single variable in determining the properties may lead to misleading
results in mechanical property calculations since samples having simi-
lar porosity levels may have different interparticle-bond state. SAW
Fig. 3. Effects of porosities of Ti–6Al–4V alloys on longitudinal velocities VL
(■) (a), transverse velocities VT (●) (b), and Rayleigh velocities VR (▲) (c).
CHARACTERIZATION OF SINGLE SAW VELOCITIES OF Ti–6Al–4V ALLOY 419
velocities of Ti–6Al–4V alloys as a function of porosity are shown in
Fig. 4.
4. CONCLUSIONS
Every single change in the peak of FFT spectra of Ti–6Al–4V alloys
Fig. 4. SAW velocities of Ti–6Al–4V alloys as a function of porosity. SAW
velocities, VL, VT, VT, in different presentations (a) and (b).
420 Y. AL-SAYAD, Z. HADJOUB, and A. DOGHMANE
subsequent from a change structures organizer is due to changed po-
rosity applied. The change in the value of porosity of Ti–6Al–4V alloys
influence the elastic moduli (E, B, G) such as SAW velocity (VL, VT, VR)
were realized.
Increasing porosity of Ti–6Al–4V alloys (61% to 75.3%) as experi-
mental and calculated material leads to a decrease of elastic moduli, E,
G, B, as from 3.8 to 0.23 GPa, from 4 to 0.22 GPa, and from 1.4.8 to
0.087 GPa, respectively.
These results show the dependence of the curve divergence of the
period velocity characterized with a physical understanding of type of
bonding molecules’ arrangements in materials.
The rank of this analysis is in the determination, for a given SAW
velocity of known porosities of Ti–6Al–4V alloys, of favourite trial
about Rayleigh modes for porous 60% to 75%.
Decreasing porosities of Ti–6Al–4V alloys round (from 61% to
75.3%) pointers to increasing affected on each change in the VL (■), VT
(●), and VR (▲) values as follow: from 1139 ms 1
to 285 ms 1, from 587
ms 1
to 143 ms 1, and from 562 ms 1
to 136 ms 1, respectively. Finally,
SAW velocities (longitudinal, transverse, Rayleigh ones) were found
to be dependent on porosities of Ti–6Al–4V alloys line by means of the
general formula being the kind of exponential function as follows:
SAW velocities (m/s) V0 e 1/R0
(porosity, %), R
2
is regression line.
REFERENCES
1. M. Peters, H. Hemptenmacher, J. Kumpfert, and C. Leyens, Titanium and
Titanium Alloys (Eds. C. Leyens and M. Peters) (Weinheim: Wiley-VCH:
2003).
2. G. Kotan and A. S¸akir Bor, Turkish J. Eng. Env. Sci., 31: 149 (2007).
3. Sh. R. Bhattarai, Kh. A.-R. Khalil, M. Dewidar, P. H. Hwang, H. K. Yi, and
H. Y. Kim, J. Biomedical Materials Research Part A, 86A, Iss. 2: 289
(2008).
4. A. Briggs, Acoustic Microscopy (Oxford: Clarendon Press: 1992).
5. J. David and N. Cheeke, Fundamentals and Applications of Ultrasonic (Boca
Raton: CRC Press: 2002).
6. I. A. Viktorov, Rayleigh and Love Waves. Section 1.1 (New York: Plenum:
1967).
7. J. E. May, IEEE Spectrum, 2: 73 (1965).
8. R. M. White and F. W. Voltmer, Appl. Phys. Lett., 7: 314 (1965).
9. C.-C. Tseng, J. Appl. Phys., 38: 4281 (1967).
10. C.-C. Tseng, J. Appl. Phys., 41: 2270 (1970).
11. R. M. White, IEEE Trans. Elect. Dev., ED14: 181 (1967).
12. H. F. Tiersten, J. Appl. Phys., 40: 770 (1969).
13. D. L. White, IEEE Ultrasonics Symp. (Vancouver: 1967).
14. E. Stern, Lincoln Lab. Tech., Note No. 1968-36, M.I.T. (1968).
15. J. B. Liu, J. N. Peterson, F. Forsberg, M. D. Jaeger, D. B. Kynor, and
R. J. Kline-Schoder, Ultrasonics, 42: 337 (2004).
https://doi.org/10.1002/jbm.a.31490
https://doi.org/10.1002/jbm.a.31490
https://doi.org/10.1201/9781420042139
https://doi.org/10.1201/9781420042139
https://doi.org/10.1007/978-1-4899-5681-1
https://doi.org/10.1007/978-1-4899-5681-1
https://doi.org/10.1109/MSPEC.1965.6500979
https://doi.org/10.1063/1.1754276
https://doi.org/10.1063/1.1709116
https://doi.org/10.1063/1.1659217
https://doi.org/10.1109/T-ED.1967.15926
https://doi.org/10.1063/1.1657463
https://doi.org/10.1016/j.ultras.2003.12.028
CHARACTERIZATION OF SINGLE SAW VELOCITIES OF Ti–6Al–4V ALLOY 421
16. S. Bouhedja, I. Hadjoub, A. Doghmane, and Z. Hadjoub, phys. status solidi (a),
202: 1025 (2005).
17. K. Wang, Mat. Sci. Eng. A, 213: 134 (1996).
18. C. G. R. Sheppard and T. Wilson, Appl. Phys. Lett., 38: 858 (1981).
19. J. Kushibiki and N. Chubachi, IEEE Sonics Ultrason., SU-32, No. 2, 189
(1985).
20. R. G. Munro and J. Res, Nat. Inst. Stand. Technol., 105: 709 (2000).
https://doi.org/10.1002/pssa.200420013
https://doi.org/10.1002/pssa.200420013
https://doi.org/10.1016/0921-5093(96)10243-4
https://doi.org/10.1063/1.92198
https://doi.org/10.1109/T-SU.1985.31586
https://doi.org/10.1109/T-SU.1985.31586
https://doi.org/10.6028/jres.105.057
|