Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications

Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understanding of bonding arrangements at propagating surface acoustic-wave velocities. These velocities are deduced from the analysis of the topped acoustic signatu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Al-Sayad, Y., Hadjoub, Z., Doghmane, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут металофізики ім. Г.В. Курдюмова НАН України 2018
Назва видання:Металлофизика и новейшие технологии
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/145922
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications / Y. Al-Sayad, Z. Hadjoub, A. Doghmane // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 3. — С. 411-421. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-145922
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1459222025-02-09T13:27:33Z Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications Характеризация скоростей одиночных поверхностных акустических волн (ПАВ) сплавов Ti–6Al–4V как функции пористости согласно моделированию сканирующей акустической микроскопии (САМ) для приложений Характеризація швидкостей одиничних поверхневих акустичних хвиль (ПАХ) стопів Ti–6Al–4V як функції поруватости за моделюванням сканувальної акустичної мікроскопії (САМ) для застосувань Al-Sayad, Y. Hadjoub, Z. Doghmane, A. Физико-технические основы эксперимента и диагностики Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understanding of bonding arrangements at propagating surface acoustic-wave velocities. These velocities are deduced from the analysis of the topped acoustic signatures’ curves obtained by recording the output signal VV. We used simulation of acoustic microscopy to measure Rayleigh velocities. The acoustic parameters were determined as follow: longitudinal (VL), transverse (VT), and Rayleigh (VR) velocities from 1139 ms⁻¹ to 285 ms⁻¹, from 87 ms⁻¹ to 143 ms⁻¹, and from 562 ms⁻¹ to 136 ms⁻¹, respectively, for porosity from 60% to 75%. Режимы волн Рэлея зависят от пористости сплава Ti–6Al–4V, которая составляет 60–75%. Это очень важно для многих приложений и понимания связующих устройств при распространении поверхностных акустических волн. Скорости определялись с помощью анализа усечённых кривых акустических характеристик, полученных путём регистрации выходного сигнала VV. Моделированием поверхностных акустических волн измерялись скорости Рэлея. Определены акустические параметры: продольные (VL), поперечные (VT) скорости и скорость Рэлея (VR) — от 1139 мс⁻¹ до 285 мс⁻¹, от 87 мс⁻¹ до 143 мс⁻¹ и от 562 мс⁻¹ до 136 мс⁻¹ соответственно (при пористости от 60% до 75%). Режими Релейових хвиль залежать від пористости стопу Ti–6Al–4V, яка становить 60–75%. Це дуже важливо для багатьох застосувань і розуміння сполучних пристроїв при поширенні поверхневих акустичних хвиль. Швидкості визначалися за допомогою аналізи усічених кривих акустичних характеристик, одержаних шляхом реєстрації вихідного сиґналу VV. Моделюванням поверхневих акустичних хвиль вимірювалися Релейові швидкості. Визначено акустичні параметри: поздовжні (VL), поперечні (VT) швидкості та швидкість Релея (VR) — від 1139 мс⁻¹ до 285 мс⁻¹, від 87 мс⁻¹ до 143 мс⁻¹ та від 562 мс⁻¹ до 136 мс⁻¹ відповідно (при пористості від 60% до 75%). 2018 Article Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications / Y. Al-Sayad, Z. Hadjoub, A. Doghmane // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 3. — С. 411-421. — Бібліогр.: 20 назв. — англ. 1024-1809 PACS: 46.40.Cd, 61.43.Gt, 62.20.D-, 62.30.+d, 68.37.Tj, 81.05.Rm, 81.70.Cv DOI: 10.15407/mfint.40.03.0411 https://nasplib.isofts.kiev.ua/handle/123456789/145922 en Металлофизика и новейшие технологии application/pdf Інститут металофізики ім. Г.В. Курдюмова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физико-технические основы эксперимента и диагностики
Физико-технические основы эксперимента и диагностики
spellingShingle Физико-технические основы эксперимента и диагностики
Физико-технические основы эксперимента и диагностики
Al-Sayad, Y.
Hadjoub, Z.
Doghmane, A.
Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications
Металлофизика и новейшие технологии
description Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understanding of bonding arrangements at propagating surface acoustic-wave velocities. These velocities are deduced from the analysis of the topped acoustic signatures’ curves obtained by recording the output signal VV. We used simulation of acoustic microscopy to measure Rayleigh velocities. The acoustic parameters were determined as follow: longitudinal (VL), transverse (VT), and Rayleigh (VR) velocities from 1139 ms⁻¹ to 285 ms⁻¹, from 87 ms⁻¹ to 143 ms⁻¹, and from 562 ms⁻¹ to 136 ms⁻¹, respectively, for porosity from 60% to 75%.
format Article
author Al-Sayad, Y.
Hadjoub, Z.
Doghmane, A.
author_facet Al-Sayad, Y.
Hadjoub, Z.
Doghmane, A.
author_sort Al-Sayad, Y.
title Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications
title_short Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications
title_full Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications
title_fullStr Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications
title_full_unstemmed Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications
title_sort characterization of single saw velocities of ti–6al–4v alloy as a function of porosity by sam simulation for applications
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2018
topic_facet Физико-технические основы эксперимента и диагностики
url https://nasplib.isofts.kiev.ua/handle/123456789/145922
citation_txt Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications / Y. Al-Sayad, Z. Hadjoub, A. Doghmane // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 3. — С. 411-421. — Бібліогр.: 20 назв. — англ.
series Металлофизика и новейшие технологии
work_keys_str_mv AT alsayady characterizationofsinglesawvelocitiesofti6al4valloyasafunctionofporositybysamsimulationforapplications
AT hadjoubz characterizationofsinglesawvelocitiesofti6al4valloyasafunctionofporositybysamsimulationforapplications
AT doghmanea characterizationofsinglesawvelocitiesofti6al4valloyasafunctionofporositybysamsimulationforapplications
AT alsayady harakterizaciâskorostejodinočnyhpoverhnostnyhakustičeskihvolnpavsplavovti6al4vkakfunkciiporistostisoglasnomodelirovaniûskaniruûŝejakustičeskojmikroskopiisamdlâpriloženij
AT hadjoubz harakterizaciâskorostejodinočnyhpoverhnostnyhakustičeskihvolnpavsplavovti6al4vkakfunkciiporistostisoglasnomodelirovaniûskaniruûŝejakustičeskojmikroskopiisamdlâpriloženij
AT doghmanea harakterizaciâskorostejodinočnyhpoverhnostnyhakustičeskihvolnpavsplavovti6al4vkakfunkciiporistostisoglasnomodelirovaniûskaniruûŝejakustičeskojmikroskopiisamdlâpriloženij
AT alsayady harakterizacíâšvidkostejodiničnihpoverhnevihakustičnihhvilʹpahstopívti6al4vâkfunkcííporuvatostizamodelûvannâmskanuvalʹnoíakustičnoímíkroskopíísamdlâzastosuvanʹ
AT hadjoubz harakterizacíâšvidkostejodiničnihpoverhnevihakustičnihhvilʹpahstopívti6al4vâkfunkcííporuvatostizamodelûvannâmskanuvalʹnoíakustičnoímíkroskopíísamdlâzastosuvanʹ
AT doghmanea harakterizacíâšvidkostejodiničnihpoverhnevihakustičnihhvilʹpahstopívti6al4vâkfunkcííporuvatostizamodelûvannâmskanuvalʹnoíakustičnoímíkroskopíísamdlâzastosuvanʹ
first_indexed 2025-11-26T05:06:59Z
last_indexed 2025-11-26T05:06:59Z
_version_ 1849828181587001344
fulltext 411 PHYSICAL AND TECHNICAL BASIS OF EXPERIMENT AND DIAGNOSTICS PACS numbers: 46.40.Cd, 61.43.Gt, 62.20.D-, 62.30.+d, 68.37.Tj, 81.05.Rm, 81.70.Cv Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications Y. Al-Sayad, Z. Hadjoub, and A. Doghmane Badji Mokhtar University Laboratory of Semiconductors, Department of Physics, Faculty of Sciences, BO 12, CP 23000 Annaba, Algeria Rayleigh wave modes depend on porosity of Ti–6Al–4V alloy with porosities between 60–75%. It is very important in many applications and understand- ing of bonding arrangements at propagating surface acoustic-wave veloci- ties. These velocities are deduced from the analysis of the topped acoustic signatures’ curves obtained by recording the output signal V. We used simu- lation of acoustic microscopy to measure Rayleigh velocities. The acoustic parameters were determined as follow: longitudinal (VL), transverse (VT), and Rayleigh (VR) velocities from 1139 ms 1 to 285 ms 1, from 87 ms 1 to 143 ms 1, and from 562 ms 1 to 136 ms 1, respectively, for porosity from 60% to 75%. Key words: Ti–6Al–4V alloy, Rayleigh velocities, scanning acoustic micros- copy (SAM), Young’s modulus, surface acoustic waves (SAW) simulation. Режими Релейових хвиль залежать від пористости стопу Ti–6Al–4V, яка становить 60–75%. Це дуже важливо для багатьох застосувань і розуміння сполучних пристроїв при поширенні поверхневих акустичних хвиль. Швидкості визначалися за допомогою аналізи усічених кривих акустичних характеристик, одержаних шляхом реєстрації вихідного сиґналу V. Моде- люванням поверхневих акустичних хвиль вимірювалися Релейові швид- кості. Визначено акустичні параметри: поздовжні (VL), поперечні (VT) шви- дкості та швидкість Релея (VR) — від 1139 мс 1 до 285 мс 1, від 87 мс 1 до 143 мс 1 та від 562 мс 1 до 136 мс 1 відповідно (при пористості від 60% до 75%). Corresponding author: Y. Al-Sayad E-mail: yahya_sayaad@yahoo.com Citation: Y. Al-Sayad, Z. Hadjoub, and A. Doghmane, Characterization of Single SAW Velocities of Ti–6Al–4V Alloy as a Function of Porosity by SAM Simulation for Applications, Metallofiz. Noveishie Tekhnol., 40, No. 3: 411–421 (2018), DOI: 10.15407/mfint.40.03.0411. Ìåòàëëîôèç. íîâåéøèå òåõíîë. / Metallofiz. Noveishie Tekhnol. 2018, т. 40, № 3, сс. 411–421 / DOI: 10.15407/mfint.40.03.0411 Îòòèñêè äîñòóïíû íåïîñðåäñòâåííî îò èçäàòåëÿ Ôîòîêîïèðîâàíèå ðàçðåøåíî òîëüêî â ñîîòâåòñòâèè ñ ëèöåíçèåé 2018 ÈÌÔ (Èíñòèòóò ìåòàëëîôèçèêè èì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàèíû) Íàïå÷àòàíî â Óêðàèíå. https://doi.org/10.15407/mfint.40.03.0411 https://doi.org/10.15407/mfint.40.03.0411 412 Y. AL-SAYAD, Z. HADJOUB, and A. DOGHMANE Ключові слова: стоп Ti–6Al–4V, Релейова швидкість, акустична мікрос- копія, модуль Юнґа, моделювання поверхневих акустичних хвиль. Режимы волн Рэлея зависят от пористости сплава Ti–6Al–4V, которая составляет 60–75%. Это очень важно для многих приложений и понима- ния связующих устройств при распространении поверхностных акусти- ческих волн. Скорости определялись с помощью анализа усечённых кри- вых акустических характеристик, полученных путём регистрации вы- ходного сигнала V. Моделированием поверхностных акустических волн измерялись скорости Рэлея. Определены акустические параметры: про- дольные (VL), поперечные (VT) скорости и скорость Рэлея (VR) — от 1139 мс 1 до 285 мс 1, от 87 мс 1 до 143 мс 1 и от 562 мс 1 до 136 мс 1 соответ- ственно (при пористости от 60% до 75%). Ключевые слова: сплав Ti–6Al–4V, скорость Рэлея, акустическая микро- скопия, модуль Юнга, моделирование поверхностных акустических волн. (Received November 24, 2017) 1. INTRODUCTION 1.1. Materials and Background The mineralogist and chemist, William Gregor in 1791, first discov- ered titanium. Four years later, Martin Klaproth, based on the story of the Greek mythological children, the Titans, named the element as ti- tanium. After that, more than 100 years were necessary to isolate the titanium metal from its oxide. Finally, the first alloys, as well as the popular Ti–6Al–4V alloy, were developed in the late 1940. The Ti– 6Al–4V alloy is the most common used alloy among the commercially available titanium alloys. The reason for this success is the good bal- ance of its properties and the intensive development and testing of this alloy during the approximately last 60 years [1]. In the present work, the behaviour of Ti–6Al–4V components fabricated by the using sev- eral process techniques is investigated in details. Experiments were conducted in a challenge to determine the influence of critical features such as surface quality porosity on the behaviour of Ti–6Al–4V alloy [2]. In order to identify mechanism, detailed examination of the changes of dynamic SAW velocities for vary application was carried out. In a second step, different porosities, as they seem to us, change dynamics of different elasticity-moduli values and type of surface acoustic waves’ values. Configurations are described in terms of acous- tic wave velocities (AWV) to understand the influence of porosities on mechanical properties of Ti6Al4V alloy by using process techniques to fabricate porous to reduce porosity. Porous Ti–6Al–4V alloy materials are used successfully with porosities’ ranges from 60% to 75% under CHARACTERIZATION OF SINGLE SAW VELOCITIES OF Ti–6Al–4V ALLOY 413 compaction pressures in the range from 100 to 450 MPa. Ti–6Al–4V foam is produced by Space Holder Technique in powder metallurgy at temperature 1080 C with particle size of 400 m [3]. Ti–6Al–4V alloy powders of less than 78 m size with a nominal size of 58 m were used in the experiments. The powders were irregular in shape and conform to ASTM 1580-01. As a space holder material, carbamide, also named urea, was chosen due to its advantages of shape and ease of removal prior to sintering spherical carbamide particles sieved to the size range of 0.6–1.0 mm. 2. THEORETICAL DETAILS 2.1. Determination of Acoustic Wave Velocities (AWV) Rayleigh waves are a type of elastic surface wave that propagate on sol- ids. They are also produced in materials by acoustic transducers, and are used in non-destructive testing for detecting defects. They are con- fined to within the wavelength or so of the surface, along which they propagate. They are also distinct from longitudinal and shear bulk acoustic waves (BAW) modes, which propagate independently at dif- ferent velocities. In Rayleigh waves, there is a superposition of longi- tudinal and shear motions, which are intimately coupled, and they propagate together at a common velocity VR [4]. Study of surface acoustic waves started back in 1887 when Lord Rayleigh first proposed [5] their existence. Surface acoustic waves (SAW) are modes of propa- gation of elastic energy along the surface of a solid, whose displace- ment amplitudes undergo exponential decay beneath this surface. Typ- ically, almost all energy is localised within the depth of two wave- lengths. Interest in surface acoustic waves has grown since Rayleigh’s discovery. The many device applications utilising ultrasonics lead to a resurgence of interest in surface acoustic waves in the late 1960s, in- cluding ultrasonic detection of surface flaws [6] and ultrasonic delay lines [7]. Early transducer devices utilising SAWs on piezoelectric crystals [8] emerged around the same time, whilst theoretical consid- erations of the surface wave problem to include piezoelectric effects was firstly studied by Tseng [9, 10]. Further interest resulted from the multitude of signal processing applications available utilizing surface acoustic waves partly because the character of the wave can be changed in transit [11] as well as the fact the wave can be guided [12, 13] and even amplified [14]. In this study, the acoustic wave velocities (AWV) are studied. Using Scanning Acoustic Microscopy (SAM) simulation, different velocity values will be calculated when impacted to porosity on these velocities. That allows us to make use of them as possibility as making them in the engineering and architectural and medical applications. http://en.wikipedia.org/wiki/Surface_wave http://en.wikipedia.org/wiki/Interdigital_transducer http://en.wikipedia.org/wiki/Non-destructive_testing 414 Y. AL-SAYAD, Z. HADJOUB, and A. DOGHMANE 2.2. SAM Principle Scanning Acoustic Microscopy is a non-invasive imaging technique is based on ultrasound with assets of a similar resolution as having the light microscopy [15]. It studies dynamics to measure acoustic wave velocities (AWV) by SAM devices widely used in this study a frequency due to their stability. SAM is a non-destructive analytical tool for me- chanical properties’ investigations of bulk materials as well as alloys [16] that is the known dispersion behaviour of the dependence of the surface acoustic wave. According to SAW, velocity values in alloys’ structures show us multiphenomena as Rayleigh velocity and elastic properties. However, let us appear the work principle of SAM. The simulations were carried out in the case of SAM under the following conditions: half-lens opening angle n 50 , frequency f 140 MHz, and properties of coupling liquid Freon whose density, 1570 Kg/m3, and longitudinal velocity of liquid, Vliq 716 m s 1, are summa- rised in tables below as well as different substrates with several porosi- ties of Ti–6Al–4V alloy [17] (Fig. 1). Appearing SAM at the work prin- ciple is considered for specific mode detection. 3. RESULTS AND DISCUSSION 3.1. Fast Fourier Curves The most important that was studied is scanning acoustic microscopy technique when acoustic waves downfall on material in the case these Ti–6Al–4V alloy materials through them coupling. Liquid as Freon, which properties have been cleared previously. Acoustic waves work strikes material molecule mechanism move va- riety velocities, the most importantly, velocity is Rayleigh velocities Fig. 1. Representation of a scanning acoustic microscope. CHARACTERIZATION OF SINGLE SAW VELOCITIES OF Ti–6Al–4V ALLOY 415 measured from through waves reflective from Ti–6Al–4V alloy mate- rials to lens which is the image as energy outer is recorded as the out- put voltage V(z), which sets following relationship [18]: V(z) R( )P2( )ei2kzcos cos sin d , (1) where is the angle between a wave vector (k) and the lens axis (z), P2( ) is the lens pupil function, and R( ) is the reflection function of the Ti–6Al–4V alloy material. This output voltage V(z) depends on the distance (z) between lens and Ti–6Al–4V alloy material, which is re- flective. As noted previously, reflective acoustic waves get overlap for these acoustic waves as a result of constructive and destructive inter- ference between different propagating and treatment of periodic V(z) curves by the fast Fourier transform (FFT). Rayleigh velocity (VR) is determined from the principal peaks of the FFT via the following rela- tionship [19]: VR Vliq/{1 [1 Vliq/(2f z)]2}1/2, (2) where Vliq is the velocity in the coupling liquid, f is the operating fre- quency, and z is the period between two successive minima (or two successive maxima) in the V(z) periodic response. The FFT peaks con- sist of valuable minor and values great the petition also. This one spec- trum changes factors affecting in change arrangement of Ti–6Al–4V alloy materials in our study. They porosity are changed from atomic ranking to Ti–6Al–4V alloy materials increased porosity and note changes in interfered waves, which are reflected from Ti–6Al–4V alloy material clarified in spectra. However, this one change happened slow- ly when approaching porosity to up 75%. We can say that effect poros- ity to change characteristics of Ti–6Al–4V alloys from through mole- cules drift of the specimen and convergence for some, which shows Rayleigh velocities and is referred by pointer. In Figure 2, Rayleigh velocities change, whenever changed porous Ti–6Al–4V alloys will recognize as a function of porosity. 3.2. Elastic Moduli Mechanical properties such as Young’s modulus (E) determined from curves of porous Ti–6Al–4V alloys [3] are presented in Table 1 for samples containing minimum and maximum amount of porosities. As expected, mechanical properties of porous Ti–6Al–4V samples are bet- ter than the porous titanium samples in the same porosity range. In this study, elastic properties of materials with density 4430 kg/m3 and Poisson ratio, 0.325 [3], can be expressed in terms of independ- ent parameters, shear modulus (G), bulk modulus (B) [20], and 416 Y. AL-SAYAD, Z. HADJOUB, and A. DOGHMANE Young’s modulus, as follow: G E/[2( 1)], (3) B EG/[3(3G E)], (4) VL VT[(E 4G)/(E 3G)]1/2, (5) VT /G , (6) for several porosities as in Table 1. Differences in porosity characteris- tics and the number contacts formed before and during porosity may be the reason of revealed difference. As higher porosity contribute to the decrease in elastic moduli of Ti–6Al–4V alloys, and for porosity in- crease, elastic moduli decrease occurs. This effect is more evident in TABLE 1. Young’s modulus, shear modulus, and bulk modulus values for minimum and maximum porosities of Ti–6Al–4V alloys. Porosity, % Experimental Calculated , kg/m3 E, GPa B, GPa G, GPa 61 4430 3.8 0.325 4 1.4 62.08 3.55 3.38 1.34 63.3 2 1.86 0.74 65.7 1.1 1.1 0.42 70.6 0.6 0.6 0.23 71.6 0.50 0.5 0.19 75 0.25 0.24 0.09 75.3 0.23 0.22 0.087 Fig. 2. FFT spectra with rays number of Ti–6Al–4V alloys at different porosi- ties. CHARACTERIZATION OF SINGLE SAW VELOCITIES OF Ti–6Al–4V ALLOY 417 porosity of Ti–6Al–4V alloys having elastic moduli values by 75.3% lower than that of ones in the same porosity range. 3.3. Measurable Acoustic Velocities of Ti–6Al–4V Alloys as a Function of Porosity The treatment resulting fast Fourier transform (FFT) from the use of scanning acoustic microscopy simulation software to a conclusion Ray- leigh velocities VR, which is characterized by a large spectrum consist- ing of one wide peaks (Fig. 2), by measuring the output response V, fol- lowing relationship (2). The peak consistent to the Rayleigh mode ap- pears for all porosities 60% to 75%. The magnitude of VR peaks is de- clining with increase of the porosities of Ti–6Al–4V alloys after calcu- lation of reflection coefficient, R( ), and acoustic material, V(z), the characteristics of highly porous materials is agreed with same low ve- locity values via clearly Table 2. We were able to deduce the depend- ence of Rayleigh velocities, VR, of Ti–6Al–4V alloys. After FFT analy- sis leads to the calculation of longitudinal (VL) and transversal (VT) values by Eq. (5) and (6) as in Table 2; such high values are impossible to characterize this material with effective porosities creation use of former relations between SAW velocity and porosity. To verify this relation, it is necessary to select the best slower velocity than well- investigated material to application. Relationship between longitudi- nal velocities, transverse velocities, and Rayleigh velocities with low porosities of Ti–6Al–4V alloys for application due to possible change of physical alloys and the relationship between the changed porosity due to creation methods applied. The quantification of the results via computer fitting all porosity of Ti–6Al–4V alloys in this part takes an exponential dependence: TABLE 2. Calculated and experimental SAW velocity (VR,VL, and VT) values for minimum and maximum porosities of Ti–6Al–4V alloys. Porosity, % Experimental Calculated , kg/m3 VR, m/s VL, m/s VT, m/s 61 4430 0.325 3.8 1139 557 62.08 3.55 1080 550 63.3 2 802 409 65.7 1.1 612 308 70.6 0.6 452 228 71.6 0.50 412 207 75 0.25 285 143 75.3 0.23 275 140 418 Y. AL-SAYAD, Z. HADJOUB, and A. DOGHMANE SAW velocities (m/s) V0 e 1/R 0 (Porosity,%), (7) where the relationship between porosities and surface acoustic wave velocities of Ti–6Al–4V alloys are expositional function V V0 e 1/R 0 [m/s] of porosity [%]. V0 VL0 ,VT0, or VR0, and are parameters of the Exp. Dec. curve fit model and R 2 is regression line. V is the velocities of the porous material. Dynamic method was used to determine the SAW velocities of Ti–6Al–4V alloys. The best fitting curves for SAW veloci- ties’ data of samples in the present study give Eq. (7) for Ti–6Al–4V alloy samples. We can give general form equation to understand the relation porosity 60% to 75% with SAW velocities as Eq. (7). It is clear that the linear dependence is obtained in all cases for slope changes with every kind of SAW velocity curves (Fig. 3). In studies, variation of relative mechanical property with small porosity (P, %) of samples has been shown to obey the relation. Use of porosity content as a single variable in determining the properties may lead to misleading results in mechanical property calculations since samples having simi- lar porosity levels may have different interparticle-bond state. SAW Fig. 3. Effects of porosities of Ti–6Al–4V alloys on longitudinal velocities VL (■) (a), transverse velocities VT (●) (b), and Rayleigh velocities VR (▲) (c). CHARACTERIZATION OF SINGLE SAW VELOCITIES OF Ti–6Al–4V ALLOY 419 velocities of Ti–6Al–4V alloys as a function of porosity are shown in Fig. 4. 4. CONCLUSIONS Every single change in the peak of FFT spectra of Ti–6Al–4V alloys Fig. 4. SAW velocities of Ti–6Al–4V alloys as a function of porosity. SAW velocities, VL, VT, VT, in different presentations (a) and (b). 420 Y. AL-SAYAD, Z. HADJOUB, and A. DOGHMANE subsequent from a change structures organizer is due to changed po- rosity applied. The change in the value of porosity of Ti–6Al–4V alloys influence the elastic moduli (E, B, G) such as SAW velocity (VL, VT, VR) were realized. Increasing porosity of Ti–6Al–4V alloys (61% to 75.3%) as experi- mental and calculated material leads to a decrease of elastic moduli, E, G, B, as from 3.8 to 0.23 GPa, from 4 to 0.22 GPa, and from 1.4.8 to 0.087 GPa, respectively. These results show the dependence of the curve divergence of the period velocity characterized with a physical understanding of type of bonding molecules’ arrangements in materials. The rank of this analysis is in the determination, for a given SAW velocity of known porosities of Ti–6Al–4V alloys, of favourite trial about Rayleigh modes for porous 60% to 75%. Decreasing porosities of Ti–6Al–4V alloys round (from 61% to 75.3%) pointers to increasing affected on each change in the VL (■), VT (●), and VR (▲) values as follow: from 1139 ms 1 to 285 ms 1, from 587 ms 1 to 143 ms 1, and from 562 ms 1 to 136 ms 1, respectively. Finally, SAW velocities (longitudinal, transverse, Rayleigh ones) were found to be dependent on porosities of Ti–6Al–4V alloys line by means of the general formula being the kind of exponential function as follows: SAW velocities (m/s) V0 e 1/R0 (porosity, %), R 2 is regression line. REFERENCES 1. M. Peters, H. Hemptenmacher, J. Kumpfert, and C. Leyens, Titanium and Titanium Alloys (Eds. C. Leyens and M. Peters) (Weinheim: Wiley-VCH: 2003). 2. G. Kotan and A. S¸akir Bor, Turkish J. Eng. Env. Sci., 31: 149 (2007). 3. Sh. R. Bhattarai, Kh. A.-R. Khalil, M. Dewidar, P. H. Hwang, H. K. Yi, and H. Y. Kim, J. Biomedical Materials Research Part A, 86A, Iss. 2: 289 (2008). 4. A. Briggs, Acoustic Microscopy (Oxford: Clarendon Press: 1992). 5. J. David and N. Cheeke, Fundamentals and Applications of Ultrasonic (Boca Raton: CRC Press: 2002). 6. I. A. Viktorov, Rayleigh and Love Waves. Section 1.1 (New York: Plenum: 1967). 7. J. E. May, IEEE Spectrum, 2: 73 (1965). 8. R. M. White and F. W. Voltmer, Appl. Phys. Lett., 7: 314 (1965). 9. C.-C. Tseng, J. Appl. Phys., 38: 4281 (1967). 10. C.-C. Tseng, J. Appl. Phys., 41: 2270 (1970). 11. R. M. White, IEEE Trans. Elect. Dev., ED14: 181 (1967). 12. H. F. Tiersten, J. Appl. Phys., 40: 770 (1969). 13. D. L. White, IEEE Ultrasonics Symp. (Vancouver: 1967). 14. E. Stern, Lincoln Lab. Tech., Note No. 1968-36, M.I.T. (1968). 15. J. B. Liu, J. N. Peterson, F. Forsberg, M. D. Jaeger, D. B. Kynor, and R. J. Kline-Schoder, Ultrasonics, 42: 337 (2004). https://doi.org/10.1002/jbm.a.31490 https://doi.org/10.1002/jbm.a.31490 https://doi.org/10.1201/9781420042139 https://doi.org/10.1201/9781420042139 https://doi.org/10.1007/978-1-4899-5681-1 https://doi.org/10.1007/978-1-4899-5681-1 https://doi.org/10.1109/MSPEC.1965.6500979 https://doi.org/10.1063/1.1754276 https://doi.org/10.1063/1.1709116 https://doi.org/10.1063/1.1659217 https://doi.org/10.1109/T-ED.1967.15926 https://doi.org/10.1063/1.1657463 https://doi.org/10.1016/j.ultras.2003.12.028 CHARACTERIZATION OF SINGLE SAW VELOCITIES OF Ti–6Al–4V ALLOY 421 16. S. Bouhedja, I. Hadjoub, A. Doghmane, and Z. Hadjoub, phys. status solidi (a), 202: 1025 (2005). 17. K. Wang, Mat. Sci. Eng. A, 213: 134 (1996). 18. C. G. R. Sheppard and T. Wilson, Appl. Phys. Lett., 38: 858 (1981). 19. J. Kushibiki and N. Chubachi, IEEE Sonics Ultrason., SU-32, No. 2, 189 (1985). 20. R. G. Munro and J. Res, Nat. Inst. Stand. Technol., 105: 709 (2000). https://doi.org/10.1002/pssa.200420013 https://doi.org/10.1002/pssa.200420013 https://doi.org/10.1016/0921-5093(96)10243-4 https://doi.org/10.1063/1.92198 https://doi.org/10.1109/T-SU.1985.31586 https://doi.org/10.1109/T-SU.1985.31586 https://doi.org/10.6028/jres.105.057