Restricted flows and the soliton equation with self-consistent sources
The KdV equation is used as an example to illustrate the relation between the restricted flows and the soliton equation with self-consistent sources. Inspired by the results on the Bäcklund transformation for the restricted flows (by V.B. Kuznetsov et al.), we constructed two types of Darboux transf...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2006 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146047 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Restricted flows and the soliton equation with self-consistent sources / Runliang Lin, Haishen Yao, Yunbo Zeng // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | The KdV equation is used as an example to illustrate the relation between the restricted flows and the soliton equation with self-consistent sources. Inspired by the results on the Bäcklund transformation for the restricted flows (by V.B. Kuznetsov et al.), we constructed two types of Darboux transformations for the KdV equation with self-consistent sources (KdVES). These Darboux transformations are used to get some explicit solutions of the KdVES, which include soliton, rational, positon, and negaton solutions.
|
|---|---|
| ISSN: | 1815-0659 |