Bethe ansatz solutions of the Bose-Hubbard dimer

The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highligh...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2006
Main Authors: Links, J., Hibberd, K.E.
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146048
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146048
record_format dspace
spelling Links, J.
Hibberd, K.E.
2019-02-06T15:04:48Z
2019-02-06T15:04:48Z
2006
Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81R12; 17B80; 81V99
https://nasplib.isofts.kiev.ua/handle/123456789/146048
The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2) Lie algebra.
This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. The work was funded by the Australian Research Council under Discovery Project DP0557949.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Bethe ansatz solutions of the Bose-Hubbard dimer
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Bethe ansatz solutions of the Bose-Hubbard dimer
spellingShingle Bethe ansatz solutions of the Bose-Hubbard dimer
Links, J.
Hibberd, K.E.
title_short Bethe ansatz solutions of the Bose-Hubbard dimer
title_full Bethe ansatz solutions of the Bose-Hubbard dimer
title_fullStr Bethe ansatz solutions of the Bose-Hubbard dimer
title_full_unstemmed Bethe ansatz solutions of the Bose-Hubbard dimer
title_sort bethe ansatz solutions of the bose-hubbard dimer
author Links, J.
Hibberd, K.E.
author_facet Links, J.
Hibberd, K.E.
publishDate 2006
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2) Lie algebra.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146048
citation_txt Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT linksj betheansatzsolutionsofthebosehubbarddimer
AT hibberdke betheansatzsolutionsofthebosehubbarddimer
first_indexed 2025-12-07T18:13:13Z
last_indexed 2025-12-07T18:13:13Z
_version_ 1850874205951754240