Bethe ansatz solutions of the Bose-Hubbard dimer
The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highligh...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2006 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2006
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146048 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146048 |
|---|---|
| record_format |
dspace |
| spelling |
Links, J. Hibberd, K.E. 2019-02-06T15:04:48Z 2019-02-06T15:04:48Z 2006 Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R12; 17B80; 81V99 https://nasplib.isofts.kiev.ua/handle/123456789/146048 The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2) Lie algebra. This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. The work was funded by the Australian Research Council under Discovery Project DP0557949. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Bethe ansatz solutions of the Bose-Hubbard dimer Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Bethe ansatz solutions of the Bose-Hubbard dimer |
| spellingShingle |
Bethe ansatz solutions of the Bose-Hubbard dimer Links, J. Hibberd, K.E. |
| title_short |
Bethe ansatz solutions of the Bose-Hubbard dimer |
| title_full |
Bethe ansatz solutions of the Bose-Hubbard dimer |
| title_fullStr |
Bethe ansatz solutions of the Bose-Hubbard dimer |
| title_full_unstemmed |
Bethe ansatz solutions of the Bose-Hubbard dimer |
| title_sort |
bethe ansatz solutions of the bose-hubbard dimer |
| author |
Links, J. Hibberd, K.E. |
| author_facet |
Links, J. Hibberd, K.E. |
| publishDate |
2006 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2) Lie algebra.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146048 |
| citation_txt |
Bethe ansatz solutions of the Bose-Hubbard dimer / J. Links, K.E. Hibberd // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT linksj betheansatzsolutionsofthebosehubbarddimer AT hibberdke betheansatzsolutionsofthebosehubbarddimer |
| first_indexed |
2025-12-07T18:13:13Z |
| last_indexed |
2025-12-07T18:13:13Z |
| _version_ |
1850874205951754240 |