Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors

In this paper, we evaluate the fitting parameters for the hopping model for the dxy and dxz bands within the Γ–M cut for different FeSe-based superconductors. Comparison of these parameters for DFT calculations and for experimentally obtained data reveals a dramatic change of hopping probability bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Металлофизика и новейшие технологии
Datum:2018
Hauptverfasser: Pustovit, Yu.V., Kordyuk, O.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут металофізики ім. Г.В. Курдюмова НАН України 2018
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146074
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors / Yu.V. Pustovit, O.A. Kordyuk // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 5. — С. 593-599. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146074
record_format dspace
spelling Pustovit, Yu.V.
Kordyuk, O.A.
2019-02-06T19:06:38Z
2019-02-06T19:06:38Z
2018
Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors / Yu.V. Pustovit, O.A. Kordyuk // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 5. — С. 593-599. — Бібліогр.: 19 назв. — англ.
1024-1809
PACS: 74.20.Mn, 74.20.Pq, 74.25.Jb, 74.70.Xa, 74.78.-w, 75.25.Dk, 81.05.Zx
DOI: https://doi.org/10.15407/mfint.40.05.0593
https://nasplib.isofts.kiev.ua/handle/123456789/146074
In this paper, we evaluate the fitting parameters for the hopping model for the dxy and dxz bands within the Γ–M cut for different FeSe-based superconductors. Comparison of these parameters for DFT calculations and for experimentally obtained data reveals a dramatic change of hopping probability between the nearest neighbours. This change is much bigger than the expected band renormalization and can be explained by the appearance of an antiferromagnetic-like ordering.
В статье оценены параметры модели перескоков для аппроксимации dxy- и dxz-зон в Γ–M-сечении для разных сверхпроводников на основе FeSe. Сравнение значений параметров для экспериментально полученных электронных дисперсий и рассчитанных с помощью метода ТФП показало снижение вероятности перескоков между ближайшими соседями. Такие изменения можно объяснить возникновением некоторого упорядочения.
У статті оцінено параметри моделю перескоків для апроксимації dxy- та dxz-зон у Γ–M-перерізі для різних надпровідників на основі FeSe. Порівняння значень цих параметрів для експериментально одержаних і розрахованих методою ТФГ електронних дисперсій показує зменшення ймовірности перескоку між найближчими сусідами. Такі зміни можуть бути пояснені появою певного виду впорядкування.
en
Інститут металофізики ім. Г.В. Курдюмова НАН України
Металлофизика и новейшие технологии
Электронные структура и свойства
Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors
Подавление перескоков электронов по ближайшим соседям в сверхпроводниках на основе FeSe
Пригнічення перескоку електронів по найближчих сусідах у надпровідниках на основі FeSe
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors
spellingShingle Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors
Pustovit, Yu.V.
Kordyuk, O.A.
Электронные структура и свойства
title_short Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors
title_full Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors
title_fullStr Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors
title_full_unstemmed Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors
title_sort suppression of nearest neighbour electron hopping in fese-based superconductors
author Pustovit, Yu.V.
Kordyuk, O.A.
author_facet Pustovit, Yu.V.
Kordyuk, O.A.
topic Электронные структура и свойства
topic_facet Электронные структура и свойства
publishDate 2018
language English
container_title Металлофизика и новейшие технологии
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
format Article
title_alt Подавление перескоков электронов по ближайшим соседям в сверхпроводниках на основе FeSe
Пригнічення перескоку електронів по найближчих сусідах у надпровідниках на основі FeSe
description In this paper, we evaluate the fitting parameters for the hopping model for the dxy and dxz bands within the Γ–M cut for different FeSe-based superconductors. Comparison of these parameters for DFT calculations and for experimentally obtained data reveals a dramatic change of hopping probability between the nearest neighbours. This change is much bigger than the expected band renormalization and can be explained by the appearance of an antiferromagnetic-like ordering. В статье оценены параметры модели перескоков для аппроксимации dxy- и dxz-зон в Γ–M-сечении для разных сверхпроводников на основе FeSe. Сравнение значений параметров для экспериментально полученных электронных дисперсий и рассчитанных с помощью метода ТФП показало снижение вероятности перескоков между ближайшими соседями. Такие изменения можно объяснить возникновением некоторого упорядочения. У статті оцінено параметри моделю перескоків для апроксимації dxy- та dxz-зон у Γ–M-перерізі для різних надпровідників на основі FeSe. Порівняння значень цих параметрів для експериментально одержаних і розрахованих методою ТФГ електронних дисперсій показує зменшення ймовірности перескоку між найближчими сусідами. Такі зміни можуть бути пояснені появою певного виду впорядкування.
issn 1024-1809
url https://nasplib.isofts.kiev.ua/handle/123456789/146074
citation_txt Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors / Yu.V. Pustovit, O.A. Kordyuk // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 5. — С. 593-599. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT pustovityuv suppressionofnearestneighbourelectronhoppinginfesebasedsuperconductors
AT kordyukoa suppressionofnearestneighbourelectronhoppinginfesebasedsuperconductors
AT pustovityuv podavleniepereskokovélektronovpobližaišimsosedâmvsverhprovodnikahnaosnovefese
AT kordyukoa podavleniepereskokovélektronovpobližaišimsosedâmvsverhprovodnikahnaosnovefese
AT pustovityuv prigníčennâpereskokuelektronívponaibližčihsusídahunadprovídnikahnaosnovífese
AT kordyukoa prigníčennâpereskokuelektronívponaibližčihsusídahunadprovídnikahnaosnovífese
first_indexed 2025-11-25T21:04:10Z
last_indexed 2025-11-25T21:04:10Z
_version_ 1850545837213483008
fulltext 593 ЭЛЕКТРОННЫЕ СТРУКТУРА И СВОЙСТВА PACS numbers: 74.20.Mn, 74.20.Pq, 74.25.Jb, 74.70.Xa, 74.78.-w, 75.25.Dk, 81.05.Zx Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors Yu. V. Pustovit* and O. A. Kordyuk*,**  *G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine **Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine In this paper, we evaluate the fitting parameters for the hopping model for the dxy and dxz bands within the cut for different FeSe-based supercon- ductors. Comparison of these parameters for DFT calculations and for exper- imentally obtained data reveals a dramatic change of hopping probability be- tween the nearest neighbours. This change is much bigger than the expected band renormalization and can be explained by the appearance of an antifer- romagnetic-like ordering. Key words: FeSe, electronic structure, iron-based superconductors, interca- lated systems, FeSe films. У статті оцінено параметри моделю перескоків для апроксимації dxy- та dxz-зон у – -перерізі для різних надпровідників на основі FeSe. Порів- няння значень цих параметрів для експериментально одержаних і розра- хованих методою ТФГ електронних дисперсій показує зменшення ймові- рности перескоку між найближчими сусідами. Такі зміни можуть бути пояснені появою певного виду впорядкування. Ключові слова: FeSe, електронна структура, залізні надпровідники, інте- ркальовані системи, плівки FeSe. В статье оценены параметры модели перескоков для аппроксимации dxy- и Corresponding author: Yuriy Valeriyovych Pustovit E-mail: jura.pustvit@gmail.com Citation: Yu. V. Pustovit and O. A. Kordyuk, Suppression of Nearest Neighbour Electron Hopping in FeSe-Based Superconductors, Metallofiz. Noveishie Tekhnol., 40, No. 5: 593–599 (2018), DOI: 10.15407/mfint.40.05.0593. Ìåòàëëîôèç. íîâåéøèå òåõíîë. / Metallofiz. Noveishie Tekhnol. 2018, т. 40, № 5, сс. 593–599 / DOI: 10.15407/mfint.40.05.0593 Îòòèñêè äîñòóïíû íåïîñðåäñòâåííî îò èçäàòåëÿ Ôîòîêîïèðîâàíèå ðàçðåøåíî òîëüêî â ñîîòâåòñòâèè ñ ëèöåíçèåé 2018 ÈÌÔ (Èíñòèòóò ìåòàëëîôèçèêè èì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàèíû) Íàïå÷àòàíî â Óêðàèíå. mailto:jura.pustvit@gmail.com https://doi.org/10.15407/mfint.40.05.0593 https://doi.org/10.15407/mfint.40.05.0593 594 Yu. V. PUSTOVIT and O. A. KORDYUK dxz-зон в – -сечении для разных сверхпроводников на основе FeSe. Срав- нение значений параметров для экспериментально полученных электрон- ных дисперсий и рассчитанных с помощью метода ТФП показало сниже- ние вероятности перескоков между ближайшими соседями. Такие изме- нения можно объяснить возникновением некоторого упорядочения. Ключевые слова: FeSe, электронная структура, железные сверхпровод- ники, интеркалированные системы, плёнки FeSe. (Received February 22, 2018) 1. INTRODUCTION Iron-based superconductors is a new class of high-temperature super- conductors, which was discovered in 2008 [1 3]. Fermi surface topolo- gy of iron-based superconductors have been predicted by numerous density functional theory (DFT) calculations and confirmed by many experiments [1 5]. However, there are some differences between the results of calculations and experimentally obtained data. First of all, it is strong renormalization of bands, which differs for distinct bands and different compounds. However, these differences can be explained by dynamical mean-field theory (DMFT) calculations [6, 7]. Another difference is a shrinking of experimentally obtained Fermi surfaces in comparison to DFT calculated ones. Such a shrinking is supposed to be a result of the shifts of bunches of the hole and electron bands in the opposite directions in the centre and at the corner of the Brillouin zone [8 10]. There are several explanations for such shifts in opposite directions. In Ref. [11], it is supposed that such shifts are fully consistent with the enhancement of the Pomeranchuk s -susceptibility predicted by the analytical renormalization group technique. Another mechanism con- siders these differences as a result of self-energy corrections due to ex- change of the spin fluctuations between the hole and electron pockets. In this case, the band shifts are supposed to be orbital-dependent ones [12 14]. In this paper, we analyse experimentally obtained ARPES data and DFT calculations of different FeSe-based superconductors in terms of hopping parameters [15, 16]. It is shown that characteristic shifts of the experimentally obtained bands can be naturally explained by block- ing of hopping between the nearest neighbours. 2. EVALUATION OF HOPPING PARAMETERS Taking into account the hopping between up to three nearest neigh- SUPPRESSION OF NEAREST NEIGHBOUR ELECTRON HOPPING IN FeSe 595 bours, the dispersion in the direction for the 2-Fe unit cell is given by formula: (k) 0 t1cos(kxa) t2cos(2kxa) t3cos(3kxa), where t1, t2, and t3 are the hopping integrals, which are proportional to probabilities of hopping between the nearest neighbours, next nearest, and next-next nearest neighbours, respectively. The hopping integrals obtained by fitting the experimental and DFT dispersions to this for- mula for different FeSe-based (Figs. 1–3) compounds are presented in Tables 1–3. In this case, we pay attention only on two bands, whose po- sitions have been obtained experimentally. It is supposed that the band structure in the range 0 1 eV is renormal- ized with some factor of renormalization. The value of the renormaliza- tion factor differs for distinct compounds and bands. Different papers give different renormalization factor values ranging from 2 to almost 17 [9, 17 19], but it is more probable that for FeSe-based superconduc- tors these factors are near 3 [4]. Such variety may be explained by the various methods for determination of the renormalization parameters. The value of these parameters can be obtained by comparing the veloci- ties (first derivatives with respect to k of the electronic dispersions) or masses (second derivatives) in different points of the Brillouin zone. These methods work properly within the ‘rigid’ band, but the band shifts in opposite directions make determination of these parameters ambiguous. In terms of the hopping model, the renormalization factors can be Fig. 1. Fit of calculated (dashed lines) and experimentally obtained (solid lines) dxz (in -point upper band) and dxy (in -point lower band) for FeSe. 596 Yu. V. PUSTOVIT and O. A. KORDYUK determined by various ways. For example, d dk ka2(t1 2t2 3t3) in the vicinity of -point, and d dk a(t1 3t3) for k /(3a). If the renormalization is related with the enhancement of quasi- Fig. 2. Fit of calculated (dashed lines) and experimentally obtained (solid lines) dxy (in -point upper band) and dxy (in -point lower band) for KFeSe. Fig. 3. Fit of calculated (dashed lines) and experimentally obtained (solid lines) dxz (in -point upper band) and dxy (in -point lower band) for monolayer FeSe film on STO substrate. SUPPRESSION OF NEAREST NEIGHBOUR ELECTRON HOPPING IN FeSe 597 particle mass, d 2 dk2 a(0.5t1 2t2 3t3) for k /(3a) and d 2 dk2 a(t1 4t2 9t3) for -point. So, direct comparison of the experimental and the calculated disper- sions cannot be made due to changes of renormalization factor with re- spect to ways of its definition and due to the shift of the bands in oppo- site directions. Thus, the most reliable way to compare the experi- mental and calculated dispersions is to evaluate the ratio between hop- ping integrals of each. Since the DFT calculations do not take into account the band renor- malization due to electronic correlations, the obtained values of hop- ping parameters for the calculated and experimentally obtained bands differ essentially but related by a ‘renormalization coefficient’. For t2 and t3, the ratio between coefficients of fitting for the calculated and TABLE 1. Fitting parameters for FeSe. FeSe 0 t1 t2 t3 dxz(calc/exp) dxy(calc/exp) 0.209 0.302 0.063 0.067 0.233 0.322 0 0.005 0.149 0.102 0.053 0.019 0.037 0.034 0.019 0.008 TABLE 2. Fitting parameters for KFeSe. KFeSe 0 t1 t2 t3 dxz(calc/exp) dxy(calc/exp) 0.209 0.385 0.15 0.07 0.123 0.299 0.007 0.006 0.126 0.072 0.058 0.016 0.024 0.002 0.01 0.0075 TABLE 3. Fitting parameters for monolayer FeSe film on STO substrate. FeSe(Monolayer) 0 t1 t2 t3 dxz(calc/exp) dxy(calc/exp) 0.195 0.406 0.141 0.076 0.221 0.276 0 0 0.179 0.146 0.053 0.016 0.065 0.029 0.019 0.003 TABLE 4. Ratio between hopping integrals for calculated and experimentally obtained electronic dispersions for FeSe, KFeSe, and single layer FeSe film on STO substrate. t1(calc)/t1(exp) t2(calc)/t2(exp) t3(calc)/t3(exp) dxz dxy dxz dxy dxz dxy FeSe KFeSe FeSe (single layer) 17 64 50 2.8 2.2 3.4 5.4 4.5 9.125 2.05 2.4 3.4 4.25 0.26 9.6 598 Yu. V. PUSTOVIT and O. A. KORDYUK experimental obtained bands is close to the renormalization factor of the band (e.g., for FeSe, it is 2 3 for dxz band and 4 5 for dxy band; Ta- ble 4). An important difference is that t1 for experimentally obtained bands for all compounds is much smaller than for results of DFT calcu- lations. For all compounds and all bands, t1 becomes zero or its value is near zero. As have been proposed in this article, changes of t1 are equiva- lent to decreasing of probability or complete blocking of the nearest neighbour hopping that can be result of appearance of some kind of or- dering. 3. CONCLUSIONS In this paper, the hopping parameters for the dxy and dxz bands for the cut of different FeSe-based superconductors have been obtained. As shown, the hopping integral for the nearest neighbours based on experimentally obtained data undergoes significant depletion compar- ing to the DFT calculated data. This depletion cannot be explained by simple band renormalization, but rather by decreasing of probability of nearest neighbour hopping, that can be a consequence of an antifer- romagnetic-like ordering. REFERENCES 1. M. V. Sadovskii, Phys. Uspekhi, 51: 1201 (2008). 2. A. L. Ivanovskii, Phys. Uspekhi, 51: 1229 (2008). 3. A. A. Kordyuk, Low Temp. Phys., 38: 888 (2012). 4. Yu. V. Pustovit and A. A. Kordyuk, Low Temp. Phys., 42: 995 (2016). 5. Yu. V. Pustovit and O. A. Kordyuk, Usp. Fiz. Met., 18, No. 1: 1 (2017) (in Ukrainian). 6. J. Ferber, K. Foyevtsova, R. Valentí, and H. O. Jeschke, Phys.Rev. B, 85, Iss. 9: 094505 (2012). 7. M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and M.Imada, Phys. Rev. B, 82, Iss. 6: 064504 (2010). 8. J. Maletz, V. B. Zabolotnyy, D. V. Evtushinsky, S. Thirupathaiah, A. U. B. Wolter, L. Harnagea, A. N. Yaresko, A. N. Vasiliev, D. A. Chareev, A. E. Böhmer, F. Hardy, T. Wolf, C. Meingast, E. D. L. Rienks, B. Büchner, and S. V. Borisenko, Phys. Rev. B, 89: 220506(R) (2014). 9. A. Fedorov, A. Yaresko, T. K. Kim, Y. Kushnirenko, E. Haubold, T. Wolf, M. Hoesch, A. Grüneis, B. Büchner, and S. V. Borisenko, Sci. Rep., 6: 36834 (2016). 10. A. A. Kordyuk, V. B. Zabolotnyy, D. V. Evtushinsky, A. N. Yaresko, B. Büechner, and S. V. Borisenko, J. Supercond. Nov. Magn., 26: 2837 (2013). 11. A. V. Chubukov, M. Khodas, and R. M. Fernandes, Phys. Rev. X, 6, Iss. 4: 041045 (2016). 12. L. Fanfarillo, J. Mansart, P. Toulemonde, H. Cercellier, P. Le Fèvre, F. Bertran, B. Valenzuela, L. Benfatto, and V. Brouet, Phys. Rev. B, 94, Iss. 15: https://doi.org/10.1070/PU2008v051n12ABEH006820 https://doi.org/10.1070/PU2008v051n12ABEH006703 https://doi.org/10.1063/1.4752092 https://doi.org/10.1063/1.4969896 https://doi.org/10.15407/ufm.18.01.001 https://doi.org/10.1103/PhysRevB.85.094505 https://doi.org/10.1103/PhysRevB.85.094505 https://doi.org/10.1103/PhysRevB.82.064504 https://doi.org/10.1103/PhysRevB.82.064504 https://doi.org/10.1103/PhysRevB.89.220506 https://www.nature.com/articles/srep36834#auth-8 https://www.nature.com/articles/srep36834#auth-9 https://www.nature.com/articles/srep36834#auth-10 https://doi.org/10.1038/srep36834 https://doi.org/10.1038/srep36834 https://doi.org/10.1007/s10948-013-2210-8 https://doi.org/10.1103/PhysRevX.6.041045 https://doi.org/10.1103/PhysRevX.6.041045 https://doi.org/10.1103/PhysRevB.94.155138 SUPPRESSION OF NEAREST NEIGHBOUR ELECTRON HOPPING IN FeSe 599 155138 (2016). 13. L. Ortenzi, E. Cappelluti, L. Benfatto, and L. Pietronero, Phys. Rev. Lett., 103, Iss. 4: 046404 (2009). 14. L. Benfatto and E. Cappelluti , Phys. Rev. B, 83, Iss. 10: 104516 (2011). 15. O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, J. Phys. Chem. Solids, 56, Iss. 12: 1573 (1995). 16. A. A. Kordyuk, S. V. Borisenko, M. Knupfer, and J. Fink, Phys.Rev. B, 67, Iss. 6: 064504 (2003). 17. F. Chen, B. Zhou, Y. Zhang, J. Wei, H.-W. Ou, J.-F. Zhao, C. He, Q.-Q. Ge, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Z.-Y. Lu, J. Hu, X.-Y. Cui, and D. L. Feng, Phys. Rev. B, 81, Iss. 1: 014526 (2010). 18. A. Tamai, A. Y. Ganin, E. Rozbicki, J. Bacsa,W. Meevasana, P. D. C. King, M. Caffio, R. Schaub, S. Margadonna, K. Prassides, M. J. Rosseinsky, and F. Baumberger, Phys. Rev. Lett., 104, Iss. 9: 097002 (2010). 19. Y. Xia, D. Qian, L. Wray, D. Hsieh, G. F. Chen, J. L. Luo, N. L. Wang, and M. Z. Hasan, Phys. Rev. Lett., 103, Iss. 3: 037002 (2009). https://doi.org/10.1103/PhysRevB.94.155138 https://doi.org/10.1103/PhysRevLett.103.046404 https://doi.org/10.1103/PhysRevLett.103.046404 https://doi.org/10.1103/PhysRevB.83.104516 https://doi.org/10.1016/0022-3697(95)00269-3 https://doi.org/10.1016/0022-3697(95)00269-3 https://doi.org/10.1103/PhysRevB.67.064504 https://doi.org/10.1103/PhysRevB.67.064504 https://doi.org/10.1103/PhysRevB.81.014526 https://doi.org/10.1103/PhysRevLett.104.097002 https://doi.org/10.1103/PhysRevLett.103.037002