Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group

The paper is about methods of discrete Fourier analysis in the context of Weyl group symmetry. Three families of class functions are defined on the maximal torus of each compact simply connected semisimple Lie group G. Such functions can always be restricted without loss of information to a fundamen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2006
Hauptverfasser: Moody, R.V., Patera, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2006
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146091
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group / R.V. Moody, J. Patera // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146091
record_format dspace
spelling Moody, R.V.
Patera, J.
2019-02-07T09:21:53Z
2019-02-07T09:21:53Z
2006
Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group / R.V. Moody, J. Patera // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 23 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 33C80; 17B10; 42C15
https://nasplib.isofts.kiev.ua/handle/123456789/146091
The paper is about methods of discrete Fourier analysis in the context of Weyl group symmetry. Three families of class functions are defined on the maximal torus of each compact simply connected semisimple Lie group G. Such functions can always be restricted without loss of information to a fundamental region F of the affine Weyl group. The members of each family satisfy basic orthogonality relations when integrated over F (continuous orthogonality). It is demonstrated that the functions also satisfy discrete orthogonality relations when summed up over a finite grid in F (discrete orthogonality), arising as the set of points in F representing the conjugacy classes of elements of a finite Abelian subgroup of the maximal torus T. The characters of the centre Z of the Lie group allow one to split functions f on F into a sum f = f1 + ... + fc, where c is the order of Z, and where the component functions fk decompose into the series of C-, or S-, or E-functions from one congruence class only.
Work supported in part by the Natural Sciences and Engineering Research Council of Canada, MITACS, M.I.N.D. Institute of Costa Mesa, Calif., and by Lockheed Martin Canada.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group
spellingShingle Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group
Moody, R.V.
Patera, J.
title_short Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group
title_full Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group
title_fullStr Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group
title_full_unstemmed Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group
title_sort orthogonality within the families of c-, s-, and e-functions of any compact semisimple lie group
author Moody, R.V.
Patera, J.
author_facet Moody, R.V.
Patera, J.
publishDate 2006
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The paper is about methods of discrete Fourier analysis in the context of Weyl group symmetry. Three families of class functions are defined on the maximal torus of each compact simply connected semisimple Lie group G. Such functions can always be restricted without loss of information to a fundamental region F of the affine Weyl group. The members of each family satisfy basic orthogonality relations when integrated over F (continuous orthogonality). It is demonstrated that the functions also satisfy discrete orthogonality relations when summed up over a finite grid in F (discrete orthogonality), arising as the set of points in F representing the conjugacy classes of elements of a finite Abelian subgroup of the maximal torus T. The characters of the centre Z of the Lie group allow one to split functions f on F into a sum f = f1 + ... + fc, where c is the order of Z, and where the component functions fk decompose into the series of C-, or S-, or E-functions from one congruence class only.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146091
citation_txt Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group / R.V. Moody, J. Patera // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 23 назв. — англ.
work_keys_str_mv AT moodyrv orthogonalitywithinthefamiliesofcsandefunctionsofanycompactsemisimpleliegroup
AT pateraj orthogonalitywithinthefamiliesofcsandefunctionsofanycompactsemisimpleliegroup
first_indexed 2025-12-07T18:08:01Z
last_indexed 2025-12-07T18:08:01Z
_version_ 1850873879380099072