Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements

We study Archimedean atomic lattice effect algebras whose set of sharp elements is a complete lattice. We show properties of centers, compatibility centers and central atoms of such lattice effect algebras. Moreover, we prove that if such effect algebra E is separable and modular then there exists a...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2010
Автор: Riecanová, Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146094
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements / Z. Riecanová // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146094
record_format dspace
spelling Riecanová, Z.
2019-02-07T12:36:36Z
2019-02-07T12:36:36Z
2010
Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements / Z. Riecanová // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 06C15; 03G12; 81P10
https://nasplib.isofts.kiev.ua/handle/123456789/146094
We study Archimedean atomic lattice effect algebras whose set of sharp elements is a complete lattice. We show properties of centers, compatibility centers and central atoms of such lattice effect algebras. Moreover, we prove that if such effect algebra E is separable and modular then there exists a faithful state on E. Further, if an atomic lattice effect algebra is densely embeddable into a complete lattice effect algebra ^E and the compatiblity center of E is not a Boolean algebra then there exists an (o)-continuous subadditive state on E.
This paper is a contribution to the Proceedings of the 5-th Microconference “Analytic and Algebraic Methods V”. The full collection is available at http://www.emis.de/journals/SIGMA/Prague2009.html. This work was supported by the Slovak Research and Development Agency under the contract No. APVV–0375–06 and the grant VEGA-2/0032/09 of MS SR. The author wishes to express his thanks to referees for many stimulating questions and suggestions during the preparation of the paper, which helped to improve it.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
spellingShingle Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
Riecanová, Z.
title_short Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
title_full Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
title_fullStr Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
title_full_unstemmed Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
title_sort archimedean atomic lattice effect algebras with complete lattice of sharp elements
author Riecanová, Z.
author_facet Riecanová, Z.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study Archimedean atomic lattice effect algebras whose set of sharp elements is a complete lattice. We show properties of centers, compatibility centers and central atoms of such lattice effect algebras. Moreover, we prove that if such effect algebra E is separable and modular then there exists a faithful state on E. Further, if an atomic lattice effect algebra is densely embeddable into a complete lattice effect algebra ^E and the compatiblity center of E is not a Boolean algebra then there exists an (o)-continuous subadditive state on E.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146094
citation_txt Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements / Z. Riecanová // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT riecanovaz archimedeanatomiclatticeeffectalgebraswithcompletelatticeofsharpelements
first_indexed 2025-12-07T17:19:02Z
last_indexed 2025-12-07T17:19:02Z
_version_ 1850870797682343936