Peterson's Deformations of higher dimensional quadrics

We provide the first explicit examples of deformations of higher dimensional quadrics: a straightforward generalization of Peterson's explicit 1-dimensional family of deformations in C³ of 2-dimensional general quadrics with common conjugate system given by the spherical coordinates on the comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2010
1. Verfasser: Dincă, I.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146115
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Peterson's Deformations of higher dimensional quadrics / Dincă I.I. // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146115
record_format dspace
spelling Dincă, I.I.
2019-02-07T13:56:28Z
2019-02-07T13:56:28Z
2010
Peterson's Deformations of higher dimensional quadrics / Dincă I.I. // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 7 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53A07; 53B25; 35Q58
https://nasplib.isofts.kiev.ua/handle/123456789/146115
We provide the first explicit examples of deformations of higher dimensional quadrics: a straightforward generalization of Peterson's explicit 1-dimensional family of deformations in C³ of 2-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere S² ⊂ C³ to an explicit (n–1)-dimensional family of deformations in C²ⁿ⁻¹ of n-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere Sⁿ ⊂ Cⁿ⁺¹ and non-degenerate joined second fundamental forms. It is then proven that this family is maximal.
I would like to thank the referees for useful suggestions. The research has been supported by the University of Buchares
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Peterson's Deformations of higher dimensional quadrics
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Peterson's Deformations of higher dimensional quadrics
spellingShingle Peterson's Deformations of higher dimensional quadrics
Dincă, I.I.
title_short Peterson's Deformations of higher dimensional quadrics
title_full Peterson's Deformations of higher dimensional quadrics
title_fullStr Peterson's Deformations of higher dimensional quadrics
title_full_unstemmed Peterson's Deformations of higher dimensional quadrics
title_sort peterson's deformations of higher dimensional quadrics
author Dincă, I.I.
author_facet Dincă, I.I.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We provide the first explicit examples of deformations of higher dimensional quadrics: a straightforward generalization of Peterson's explicit 1-dimensional family of deformations in C³ of 2-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere S² ⊂ C³ to an explicit (n–1)-dimensional family of deformations in C²ⁿ⁻¹ of n-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere Sⁿ ⊂ Cⁿ⁺¹ and non-degenerate joined second fundamental forms. It is then proven that this family is maximal.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146115
fulltext
citation_txt Peterson's Deformations of higher dimensional quadrics / Dincă I.I. // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT dincaii petersonsdeformationsofhigherdimensionalquadrics
first_indexed 2025-11-24T11:44:38Z
last_indexed 2025-11-24T11:44:38Z
_version_ 1850846096119562240