PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues
We prove the reality of the perturbed eigenvalues of some PT symmetric Hamiltonians of physical interest by means of stability methods. In particular we study 2-dimensional generalized harmonic oscillators with polynomial perturbation and the one-dimensional x²(ix)ⁿ for −1<n<0.
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2010 |
| Main Authors: | Caliceti, E., Cannata, F., Graffi, S. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146116 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | PT Symmetric Schrödinger Operators: Reality of the Perturbed Eigenvalues / E. Caliceti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On infinite-rank singular perturbations of the Schrödinger operator
by: Kuzhel’, S., et al.
Published: (2008) -
Properties of scattering matrices for (PT)-symmetric operators
by: A. I. Hrod, et al.
Published: (2013) -
On the symmetric eigenvalue complementarity problem
by: O. A. Berezovskij, et al.
Published: (2018) -
Scattering Theory for 0-Perturbed Symmetric Operators
by: A. I. Hrod, et al.
Published: (2013) -
Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry
by: Shin, K.C.
Published: (2010)