Quantum Isometry Group for Spectral Triples with Real Structure

Given a spectral triple of compact type with a real structure in the sense of [Dabrowski L., J. Geom. Phys. 56 (2006), 86-107] (which is a modification of Connes' original definition to accommodate examples coming from quantum group theory) and references therein, we prove that there is always...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2010
1. Verfasser: Goswami, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146117
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Quantum Isometry Group for Spectral Triples with Real Structure / D. Goswami // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146117
record_format dspace
spelling Goswami, D.
2019-02-07T14:43:33Z
2019-02-07T14:43:33Z
2010
Quantum Isometry Group for Spectral Triples with Real Structure / D. Goswami // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — англ.
1815-0659
2010 Mathematics Subject Classification: 58B32
https://nasplib.isofts.kiev.ua/handle/123456789/146117
Given a spectral triple of compact type with a real structure in the sense of [Dabrowski L., J. Geom. Phys. 56 (2006), 86-107] (which is a modification of Connes' original definition to accommodate examples coming from quantum group theory) and references therein, we prove that there is always a universal object in the category of compact quantum group acting by orientation preserving isometries (in the sense of [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572]) and also preserving the real structure of the spectral triple. This gives a natural definition of quantum isometry group in the context of real spectral triples without fixing a choice of 'volume form' as in [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572].
This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. The author acknowledges the support from Indian National Science Academy for the project ‘Noncommutative Geometry and Quantum Groups’ and UKIERI, British Council.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quantum Isometry Group for Spectral Triples with Real Structure
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quantum Isometry Group for Spectral Triples with Real Structure
spellingShingle Quantum Isometry Group for Spectral Triples with Real Structure
Goswami, D.
title_short Quantum Isometry Group for Spectral Triples with Real Structure
title_full Quantum Isometry Group for Spectral Triples with Real Structure
title_fullStr Quantum Isometry Group for Spectral Triples with Real Structure
title_full_unstemmed Quantum Isometry Group for Spectral Triples with Real Structure
title_sort quantum isometry group for spectral triples with real structure
author Goswami, D.
author_facet Goswami, D.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Given a spectral triple of compact type with a real structure in the sense of [Dabrowski L., J. Geom. Phys. 56 (2006), 86-107] (which is a modification of Connes' original definition to accommodate examples coming from quantum group theory) and references therein, we prove that there is always a universal object in the category of compact quantum group acting by orientation preserving isometries (in the sense of [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572]) and also preserving the real structure of the spectral triple. This gives a natural definition of quantum isometry group in the context of real spectral triples without fixing a choice of 'volume form' as in [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572].
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146117
citation_txt Quantum Isometry Group for Spectral Triples with Real Structure / D. Goswami // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — англ.
work_keys_str_mv AT goswamid quantumisometrygroupforspectraltripleswithrealstructure
first_indexed 2025-12-07T16:27:44Z
last_indexed 2025-12-07T16:27:44Z
_version_ 1850867569759617024