q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1))
For the quantum algebra Uq(gl(n+1)) in its reduction on the subalgebra Uq(gl(n)) an explicit description of a Mickelsson-Zhelobenko reduction Z-algebra Zq(gl(n+1),gl(n)) is given in terms of the generators and their defining relations. Using this Z-algebra we describe Hermitian irreducible represent...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2010 |
| Автори: | , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2010
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146148 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1)) / R.M. Asherova // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146148 |
|---|---|
| record_format |
dspace |
| spelling |
Asherova, R.M. Burdík, Č. Havlíček, M. Smirnov, Y.F. Tolstoy, V.N. 2019-02-07T19:04:36Z 2019-02-07T19:04:36Z 2010 q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1)) / R.M. Asherova // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 81R50 https://nasplib.isofts.kiev.ua/handle/123456789/146148 For the quantum algebra Uq(gl(n+1)) in its reduction on the subalgebra Uq(gl(n)) an explicit description of a Mickelsson-Zhelobenko reduction Z-algebra Zq(gl(n+1),gl(n)) is given in terms of the generators and their defining relations. Using this Z-algebra we describe Hermitian irreducible representations of a discrete series for the noncompact quantum algebra Uq(u(n,1)) which is a real form of Uq(gl(n+1)), namely, an orthonormal Gelfand-Graev basis is constructed in an explicit form. This paper is a contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Systems and Quantum Symmetries (June 18–20, 2009, Prague, Czech Republic). The full collection is available at http://www.emis.de/journals/SIGMA/ISQS2009.html. The paper has been supported by grant RFBR-08-01-00392 (R.M.A., V.N.T.) and by grant RFBR-09-01-93106-NCNIL-a (V.N.T.). The fifth author would like to thank Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague for hospitality en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1)) Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1)) |
| spellingShingle |
q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1)) Asherova, R.M. Burdík, Č. Havlíček, M. Smirnov, Y.F. Tolstoy, V.N. |
| title_short |
q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1)) |
| title_full |
q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1)) |
| title_fullStr |
q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1)) |
| title_full_unstemmed |
q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1)) |
| title_sort |
q-analog of gelfand-graev basis for the noncompact quantum algebra uq(u(n,1)) |
| author |
Asherova, R.M. Burdík, Č. Havlíček, M. Smirnov, Y.F. Tolstoy, V.N. |
| author_facet |
Asherova, R.M. Burdík, Č. Havlíček, M. Smirnov, Y.F. Tolstoy, V.N. |
| publishDate |
2010 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
For the quantum algebra Uq(gl(n+1)) in its reduction on the subalgebra Uq(gl(n)) an explicit description of a Mickelsson-Zhelobenko reduction Z-algebra Zq(gl(n+1),gl(n)) is given in terms of the generators and their defining relations. Using this Z-algebra we describe Hermitian irreducible representations of a discrete series for the noncompact quantum algebra Uq(u(n,1)) which is a real form of Uq(gl(n+1)), namely, an orthonormal Gelfand-Graev basis is constructed in an explicit form.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146148 |
| citation_txt |
q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1)) / R.M. Asherova // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT asherovarm qanalogofgelfandgraevbasisforthenoncompactquantumalgebrauqun1 AT burdikc qanalogofgelfandgraevbasisforthenoncompactquantumalgebrauqun1 AT havlicekm qanalogofgelfandgraevbasisforthenoncompactquantumalgebrauqun1 AT smirnovyf qanalogofgelfandgraevbasisforthenoncompactquantumalgebrauqun1 AT tolstoyvn qanalogofgelfandgraevbasisforthenoncompactquantumalgebrauqun1 |
| first_indexed |
2025-11-25T22:33:36Z |
| last_indexed |
2025-11-25T22:33:36Z |
| _version_ |
1850567180838502400 |
| fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 6 (2010), 010, 13 pages
q-Analog of Gelfand–Graev Basis
for the Noncompact Quantum Algebra Uq(u(n, 1))?
Raisa M. ASHEROVA †, Čestmı́r BURDÍK ‡, Miloslav HAVLÍČEK ‡,
Yuri F. SMIRNOV †§ and Valeriy N. TOLSTOY †‡
† Institute of Nuclear Physics, Moscow State University, 119992 Moscow, Russia
E-mail: raya.acherova@gmail.com, tolstoy@nucl-th.sinp.msu.ru
‡ Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague, Trojanova 13, 12000 Prague 2, Czech Republic
E-mail: burdik@kmlinux.fjfi.cvut.cz, miloslav.havlicek@fjfi.cvut.cz
§ Deceased
Received November 05, 2009, in final form January 15, 2010; Published online January 26, 2010
doi:10.3842/SIGMA.2010.010
Abstract. For the quantum algebra Uq(gl(n + 1)) in its reduction on the subalgeb-
ra Uq(gl(n)) an explicit description of a Mickelsson–Zhelobenko reduction Z-algebra
Zq(gl(n+1), gl(n)) is given in terms of the generators and their defining relations. Using
this Z-algebra we describe Hermitian irreducible representations of a discrete series for the
noncompact quantum algebra Uq(u(n, 1)) which is a real form of Uq(gl(n + 1)), namely, an
orthonormal Gelfand–Graev basis is constructed in an explicit form.
Key words: quantum algebra; extremal projector; reduction algebra; Shapovalov form; non-
compact quantum algebra; discrete series of representations; Gelfand–Graev basis
2010 Mathematics Subject Classification: 17B37; 81R50
1 Introduction
In 1950, I.M. Gelfand and M.L. Tsetlin [1] proposed a formal description of finite-dimensional
irreducible representations (IR) for the compact Lie algebra u(n). This description is a genera-
lization of the results for u(2) and u(3) to the u(n) case. It is the following. In the IR space
of u(n) there is a orthonormal basis which is numerated by the following formal schemes:
m1n m2n . . . mn−1,n mnn
m1,n−1 m2,n−1 . . . mn−1,n−1
. . . . . . . . .
m12 m22
m11
,
where all numbers mij (1 ≤ i ≤ j ≤ n) are nonnegative integers and they satisfy the standard
inequalities, “between conditions”:
mij+1 ≥ mij ≥ mi+1j+1 for 1 ≤ i ≤ j ≤ n− 1.
The first line of this scheme is defined by the components of the highest weight of u(n) IR, the
second line is defined by the components of the highest weight of u(n− 1) IR and so on.
?This paper is a contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Sys-
tems and Quantum Symmetries (June 18–20, 2009, Prague, Czech Republic). The full collection is available at
http://www.emis.de/journals/SIGMA/ISQS2009.html
mailto:raya.acherova@gmail.com
mailto:tolstoy@nucl-th.sinp.msu.ru
mailto:burdik@kmlinux.fjfi.cvut.cz
mailto:miloslav.havlicek@fjfi.cvut.cz
http://dx.doi.org/10.3842/SIGMA.2010.010
http://www.emis.de/journals/SIGMA/ISQS2009.html
2 R.M. Asherova, Č. Burd́ık, M. Havĺıček, Yu.F. Smirnov and V.N. Tolstoy
Later this basis was constructed in many papers (see, e.g., [2, 3, 4]) by using one-step lowering
and raising operators.
In 1965, I.M. Gelfand and M.I. Graev [5], using analytic continuation of the results for u(n),
obtained some results for noncompact Lie algebra u(n, m). It was shown that some class of
Hermitian IR of u(n, m) is characterized by an “extremal weight” parametrized by a set of
integers mN = (m1N ,m2N , . . . ,mNN ) (N = n + m) such that m1N ≥ m2N ≥ · · · ≥ mNN , and
by a representation type which is defined by a partition of n in the sum of two nonnegative
integers α and β, n = α + β (also see [6]).
For simplicity we consider the case u(2, 1). In this case we have three types of schemes m13 m23 m33
m12 m22
m11
for (α, β) = (2, 0),
m13 m23 m33
m12 m22
m11
for (α, β) = (1, 1),
m13 m23 m33
m12 m22
m11
for (α, β) = (0, 2).
The numbers mij of the first scheme satisfy the following inequalities
m12 ≥ m13 + 1, m13 + 1 ≥ m22 ≥ m23 + 1, m12 ≥ m11 ≥ m22.
The numbers mij of the second scheme satisfy the following inequalities
m12 ≥ m13 + 1, m33 − 1 ≥ m22, m12 ≥ m11 ≥ m22.
The numbers of the third scheme satisfy the following inequalities
m23 − 1 ≥ m12 ≥ m33 − 1, m33 − 1 ≥ m22, m12 ≥ m11 ≥ m22.
Construction of the Gelfand–Graev basis for u(n, m) in terms of one-step lowering and raising
operators is more complicated than in the compact case u(n + m).
In 1975, T.J. Enright and V.S. Varadarajan [7] obtained a classification of discrete series of
noncompact Lie algebras. Later it was proved by A.I. Molev [8] that in the case of u(n, m) the
Gelfand–Graev modules are part of the Enright–Varadarajan modules and Molev constructed
the Gelfand–Graev basis for u(n, m) in terms of the Mickelsson S-algebra [9].
A goal of this work is to obtain analogous results for the noncompact quantum algebra
Uq(u(n,m)). Since the general case is very complicated we at first consider the case Uq(u(n,1)).
The special case Uq(u(2, 1)) was considered in [10, 11]. It should be noted that the principal
series representations of Uq(u(n, 1)) were studied in [12] and a classification of unitary highest
weight modules of Uq(u(n, 1)) was considered in [13].
2 Quantum algebra Uq(gl(N)) and its noncompact
real forms Uq(u(n, m)) (n + m = N)
The quantum algebra Uq(gl(N)) is generated by the Chevalley elements q±eii (i = 1, . . . , N),
ei,i+1, ei+1,i (i = 1, 2, . . . , N − 1) with the defining relations [14, 15]:
qeiiq−eii = q−eiiqeii = 1, (2.1)
q-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra Uq(u(n, 1)) 3
qeiiqejj = qejjqeii , (2.2)
qeiiejkq
−eii = qδij−δikejk (|j − k| = 1), (2.3)
[ei,i+1, ej+1,j ] = δij
qeii−ei+1,i+1 − qei+1,i+1−eii
q − q−1
, (2.4)
[ei,i+1, ej,j+1] = 0 for |i− j| ≥ 2, (2.5)
[ei+1,i, ej+1,j ] = 0 for |i− j| ≥ 2, (2.6)
[[ei,i+1, ej,j+1]q, ej,j+1]q = 0 for |i− j| = 1, (2.7)
[[ei+1,i, ej+1,j ]q, ej+1,j ]q = 0 for |i− j| = 1, (2.8)
where [eβ, eγ ]q denotes the q-commutator:
[eβ, eγ ]q := eβeγ − q(β,γ)eγeβ.
The definition of a quantum algebra also includes operations of a comultiplication ∆q, an an-
tipode Sq, and a co-unit εq. Explicit formulas of these operations will not be used in our later
calculations and they are not given here.
Let εi (i = 1, 2, . . . , N) be a dual basis to the Cartan basis eii (i = 1, 2, . . . , N), εi(ejj) =
(εi, εj) = δij . In terms of the orthonormal basis vectors εi the positive root system ∆+ of gl(N)
(Uq(gl(N))) is presented as follows:
∆+ = {εi − εj | 1 ≤ i < j ≤ N},
where εi − εi+1 (i = 1, 2, . . . , N − 1) are the simple roots.
Since for construction of the composite root vectors eij := eεi−εj (|i− j| ≥ 2) of the quantum
algebra Uq(gl(N)) we need to use the notation of the normal ordering in the positive root system
∆+, we recall this notation. We say that the system ∆+ is written in normal (convex) ordering,
~∆+, if each positive composite root εi − εj = (εi − εk) + (εk − εj) (i ≤ k ≤ j) is located between
its components εi − εk and εk − εj . It means that in the normal ordering system ~∆+ we have
either
. . . , εi − εk, . . . , εi − εj , . . . , εk − εj , . . . ,
or
. . . , εk − εj , . . . , εi − εj , . . . , εi − εk, . . . .
There are many normal orderings in the root system ∆+ = ∆+(gl(N)), more than (N − 1)! for
N > 3. To be definite, we fix the following normal ordering (see [14, 15])
ε1 − ε2 ≺ ε1 − ε3 ≺ ε2 − ε3 ≺ ε1 − ε4 ≺ ε2 − ε4 ≺ ε3 − ε4 ≺ · · · ≺
ε1 − εk ≺ ε2 − εk ≺ · · · ≺ εk−1 − εk ≺ · · · ≺ ε1 − εN ≺ ε2 − εN ≺ · · · ≺ εN−1 − εN . (2.9)
According to this ordering, we determine the composite root vectors eij for |i−j| ≥ 2 as follows:
eij := [eik, ekj ]q−1 , eji := [ejk, eki]q, (2.10)
where 1 ≤ i < k < j ≤ N . It should be stressed that the structure of the composite root vectors
does not depend on the choice of the index k on the right-hand side of the definition (2.10). In
particular, we have
eij := [ei,i+1, ei+1,j ]q−1 = [ei,j−1, ej−1,j ]q−1 ,
eji := [ej,i+1, ei+1,i]q = [ej,j−1, ej−1,i]q, (2.11)
where 2 ≤ i + 1 < j ≤ N .
4 R.M. Asherova, Č. Burd́ık, M. Havĺıček, Yu.F. Smirnov and V.N. Tolstoy
Using these explicit constructions and defining relations (2.1)–(2.8) for the Chevalley basis it
is not hard to calculate the following relations between the Cartan–Weyl generators eij (i, j =
1, 2, . . . , N):
qekkeijq
−ekk = qδki−δkjeij (1 ≤ i, j, k ≤ N), (2.12)
[eij , eji] =
qeii−ejj − qejj−eii
q − q−1
(1 ≤ i < j ≤ N), (2.13)
[eij , ekl]q−1 = δjkeil (1 ≤ i < j ≤ k < l ≤ N), (2.14)
[eik, ejl]q−1 =
(
q − q−1
)
ejkeil (1 ≤ i < j < k < l ≤ N), (2.15)
[ejk, eil]q−1 = 0 (1 ≤ i ≤ j < k < l ≤ N), (2.16)
[eik, ejk]q−1 = 0 (1 ≤ i < j < k ≤ N), (2.17)
[ekl, eji] = 0 (1 ≤ i < j ≤ k < l ≤ N), (2.18)
[eil, ekj ] = 0 (1 ≤ i < j < k < l ≤ N), (2.19)
[eji, eil] = ejlq
eii−ejj (1 ≤ i < j < l ≤ N), (2.20)
[ekl, eli] = ekiq
ekk−ell (1 ≤ i < k < l ≤ N), (2.21)
[ejl, eki] =
(
q−1 − q
)
eklejiq
ejj−ekk (1 ≤ i < j < k < l ≤ N). (2.22)
If we apply the Cartan involution (e?
ij = eji, q? = q−1) to the formulas (2.12)–(2.22), we get
all relations between the elements of the Cartan–Weyl basis.
The explicit formula for the extremal projector for Uq(gl(N)), corresponding to the fixed
normal ordering (2.9), has the form [14, 15]
p(Uq(gl(N)) = p(Uq(gl(N − 1))(p1Np2N · · · pN−2,NpN−1,N )
= p12(p13p23) · · · (p1k · · · pk−1,k) · · · (p1N · · · pN−1,N ), (2.23)
where the elements pij (1 ≤ i < j ≤ N) are given by
pij =
∞∑
r=0
(−1)r
[r]!
ϕij,re
r
ije
r
ji, ϕij,r = q−(j−i−1)r
{
r∏
s=1
[eii − ejj + j − i + s]
}−1
. (2.24)
Here and elsewhere the symbol [x] is given as follows
[x] =
qx − q−x
q − q−1
.
The extremal projector p := p(Uq(gl(N)) satisfies the relations:
ei,i+1p = pei+1,i = 0 (1 ≤ i ≤ N − 1), p2 = p. (2.25)
The extremal projector p belongs to the Taylor extension TUq(gl(N)) of the quantum algebras
Uq(gl(N)). The Taylor extension TUq(gl(N)) is an associative algebra generated by formal
Taylor series of the form∑
{r̃},{r}
C{r̃},{r}
(
qe11 , . . . , qeNN
)
er̃12
21 er̃13
31 er̃23
32 · · · er̃N−1,N
N,N−1er12
12 er13
13 er23
23 · · · erN−1,N
N−1,N
provided that nonnegative integers r̃12, r̃13, r̃23, . . . , r̃N−1,N and r12, r13, r23, . . . , rN−1,N are sub-
ject to the constraints∣∣∣∣∣∑
i<j
r̃ij −
∑
i<j
rij
∣∣∣∣∣ ≤ const
q-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra Uq(u(n, 1)) 5
for each formal series and the coefficients C{r̃},{r}(qe11 , . . . , qeNN ) are rational functions of the
q-Cartan elements qeii . The quantum algebra Uq(gl(N)) is a subalgebra of the Taylor extension
TUq(gl(N)), Uq(gl(N)) ⊂ TUq(gl(N)).
We consider, on the quantum algebra Uq(gl(N)), two real forms: compact and noncompact.
The compact quantum algebra Uq(u(N)) can be considered as the quantum algebra Uq(gl(N))
(N = n + m) endowed with the additional Cartan involution ?:
h?
i = hi for i = 1, 2, . . . , N, (2.26)
e?
i,i+1 = ei+1,i, e?
i+1,i = ei,i+1 for 1 ≤ i ≤ N − 1, (2.27)
q? = q or q? = q−1. (2.28)
Thus we have two compact real forms: with real q (q? = q) and with circular q (q? = q−1). In the
case of the circular q the Cartan–Weyl basis eij (i, j = 1, 2, . . . , N) constructed by formulas (2.10)
is ?-invariant, i.e. e?
ij = eji for all 1 ≤ i, j ≤ N . In the case of the real q this Cartan–Weyl basis
is not ?-invariant, since the basis vectors satisfy the relations e?
ij = e′ji for |i− j| ≥ 2 where the
root vectors e′ji are obtained from (2.10) by the replacement q±1 → q∓1.
It is reasonable to consider the real compact form on the Taylor extension TUq(gl(N)). In
particular, it should be noted that
p? = p for real and circular q. (2.29)
This property is a direct consequence of a uniqueness theorem for the extremal projector, which
states that equations (2.25) have a unique nonzero solution in the space of the Taylor extension
TUq(gl(N)) and this solution does not depend on the choice of normal ordering and on the
replacement q±1 → q∓1 in formulas (2.10).
The noncompact quantum algebra Uq(u(n, m)) can be considered as the quantum algebra
Uq(gl(N)) (N = n + m) endowed with the additional Cartan involution ∗:
h∗i = hi for i = 1, 2, . . . , N, (2.30)
e∗i,i+1 = ei+1,i, e∗i+1,i = ei,i+1 for 1 ≤ i ≤ N − 1, i 6= n, (2.31)
e∗n,n+1 = −en+1,n, e∗n+1,n = −en,n+1, (2.32)
q∗ = q or q∗ = q−1. (2.33)
We also have two noncompact real forms: with real q (q? = q) and with circular q (q? = q−1).
Below we will consider the real form Uq(u(n, 1)), i.e. the case N = n + 1.
3 The reduction algebra Zq(gl(n + 1), gl(n))
In the linear space TUq(gl(n + 1)) we separate out a subspace of “two-sided highest vectors”
with respect to the subalgebra Uq(gl(n)) ⊂ Uq(gl(n + 1)), i.e.
Z̃q(gl(n + 1), gl(n)) =
{
x ∈ TUq(gl(n + 1))
∣∣ ei,i+1x = xei+1,i = 0, 1 ≤ i ≤ n− 1
}
.
It is evident that if x ∈ Z̃q(gl(n + 1), gl(n)) then
x = pxp,
where p := p(Uq(gl(n)). Again, using the annihilation properties of the projection operator p
we have that any vector x ∈ Z̃q(gl(n+1), gl(n)) can be presented in the form of a formal Taylor
series on the following monomials
pe
r′1
n+1,1 · · · e
r′n
n+1,nern
n,n+1 · · · e
r1
1,n+1p. (3.1)
6 R.M. Asherova, Č. Burd́ık, M. Havĺıček, Yu.F. Smirnov and V.N. Tolstoy
It is evident that Z̃q(gl(n+1), gl(n)) is a subalgebra in TUq(gl(n+1)). We consider a subalgebra
Zq(gl(n + 1), gl(n)) generated by finite series on monomials (3.1).
We set
z0 := p, zi := pei,n+1p, z−i := pen+1,ip (i = 1, 2, . . . , n).
Theorem 1. The elements zi (i = 0,±1,±2, . . . ,±n) generate the unital associative algebra
Zq(gl(n + 1), gl(n)) and satisfy the following relations
z0zi = ziz0 = zi for i = 0,±1,±2, . . . ,±n, (3.2)
ziz−j = z−jzi for 1 ≤ i, j ≤ n, i 6= j, (3.3)
zizj = zjzi
[ϕij + 1]
[ϕij ]
for 1 ≤ i < j ≤ n, (3.4)
z−iz−j = z−jz−i
[ϕij ]
[ϕij + 1]
for 1 ≤ i < j ≤ n, (3.5)
and
ziz−i =
n∑
j=1
Bijz−jzj + γiz0 for i = 1, 2, . . . , n, (3.6)
where
Bij = −
b−i b+
j
[ϕij − 1]
, γi = [ϕi,n+1 − 1]b−i , (3.7)
b±i =
n∏
s=i+1
[ϕis ± 1]
[ϕis]
, ϕij = eii − ejj + j − i. (3.8)
Remark 1. The relations (3.2) state that the element z0 is an algebraic unit in Zq(gl(n + 1),
gl(n)).
A proof of the theorem can be obtained by direct calculations using the explicit form of
extremal projector (2.23), (2.24).
It should be noted that the theorem was proved by V.N.T. as early as 1989 but it has not
been published up to now, however, the results of the theorem were used for construction of the
Gelfand–Tsetlin basis for the compact quantum algebra Uq(u(n)) [14, 15].
For construction and study of the discrete series of the noncompact quantum algebra Uq(u(n,1)
we need other relations than (3.6). The system (3.6) expresses the elements ziz−i in terms of
the elements z−izi (i = 1, 2, . . . , n) but we would like to express the elements z−1z1, . . . , z−αzα,
zα+1z−α−1, . . . , znz−n in terms of the elements z1z−1, . . . , zαz−α, z−α−1zα+1, . . . , z−nzn for α =
0, 1, . . . , n.1, 2 These relations are given by the proposition.
Proposition 1. The elements z−1z1, . . . , z−αzα, zα+1z−α−1, . . . , znz−n are expressed in terms of
the elements z1z−1, . . . , zαz−α, z−α−1zα+1, . . . , z−nzn by the formulas
z−izi =
α∑
j=1
B
(α)
ij zjz−j +
n∑
l=α+1
B
(α)
il z−lzl + γ
(α)
i z0 (1 ≤ i ≤ α), (3.9)
zkz−k =
α∑
j=1
B
(α)
kj zjz−j +
n∑
l=α+1
B
(α)
kl z−lzl + γ
(α)
k z0 (α + 1 ≤ k ≤ n). (3.10)
1In the case α = 0 we have relations (3.6) and for α = n we obtain the system inverse to (3.6).
2In Section 5 the parameter α will characterize a representation type of the discrete series.
q-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra Uq(u(n, 1)) 7
Here
B
(α)
ij =
b
(α)+
i b
(α)−
j
[ϕij + 1]
, B
(α)
il =
b
(α)+
i b
(α)+
l
[ϕil]
,
γ
(α)
i = −[ϕi,n+1 − α]b(α)+
i for 1 ≤ i, j ≤ α < l ≤ n, (3.11)
B
(α)
kj = −
b
(α)−
k b
(α)−
j
[ϕkj ]
, B
(α)
kl = −
b
(α)−
k b
(α)+
l
[ϕkl − 1]
,
γ
(α)
k = [ϕk,n+1 − α− 1]b(α)−
k for 1 ≤ j ≤ α < k, l ≤ n, (3.12)
where
b
(α)±
i =
(
i−1∏
s=1
[ϕis ± 1]
[ϕis]
)(
n∏
s=α+1
[ϕis]
[ϕis ± 1]
)
(1 ≤ i ≤ α), (3.13)
b
(α)±
l =
(
α∏
s=1
[ϕls]
[ϕls ± 1]
)(
n∏
s=l+1
[ϕls ± 1]
[ϕls]
)
(α + 1 ≤ l ≤ n). (3.14)
Scheme of proof. The relations (3.9) and (3.10) with the coefficients (3.11)–(3.14) can be
proved by induction on α. For α = 0 they coincide with the relations (3.6)–(3.8)3. Next
we assume that relations (3.9)–(3.14) are valid for α ≥ 1 and we extract from (3.10) the
relation with k = α + 1 and express in it the term z−α−1zα+1 in terms of the elements
z1z−1, . . . , zα+1z−α−1, z−α−2zα+2, . . ., z−nzn; then this expression is substituted in the right
side of the rest relations (3.9) and (3.10) and after some algebraic manipulations we obtain
the relations (3.9)–(3.14) where α should be replaced by α + 1. �
Using (3.3)–(3.5) and (3.9)–(3.14) we can prove some power relations.
Proposition 2. The following power relations are valid
zr
i z
s
−j = zs
−jz
r
i for 1 ≤ i, j ≤ n, i 6= j and r, s ∈ N, (3.15)
zr
i z
s
j = zs
jz
r
i
[ϕij + r]![ϕij − s]!
[ϕij ]![ϕij + r − s]!
for 1 ≤ i < j ≤ n and r, s ∈ N, (3.16)
zr
−iz
s
−j = zs
−jz
r
−i
[ϕij ]![ϕij − r + s]!
[ϕij − r]![ϕij + s]!
for 1 ≤ i < j ≤ n and r, s ∈ N, (3.17)
z−iz
r
i = zr−1
i
α∑
j=1
B
(α)
ij (r)zjz−j +
n∑
l=α+1
B
(α)
il (r)z−lzl + γ
(α)
i (r)z0
(1 ≤ i ≤ α), (3.18)
zkz
r
−k = zr−1
−k
α∑
j=1
B
(α)
kj (r)zjz−j +
n∑
l=α+1
B
(α)
kl (r)z−lzl + γ
(α)
k (r)z0
(α+1 ≤ k ≤ n). (3.19)
Here
B
(α)
ij (r) =
[r]
[ϕij + r]
b
(α)+
i (r)b(α)−
j , B
(α)
il (r) =
[r]
[ϕil + r − 1]
b
(α)+
i (r)b(α)+
l ,
γ
(α)
i (r) = −[r][ϕi,n+1 − α + r − 1]b(α)+
i (r) (1 ≤ i, j ≤ α < l ≤ n; r ∈ N), (3.20)
3In this case, the relations (3.9) are absent and, moreover, the first sum in the right side of the relations (3.10)
is equal to 0 for α = 0.
8 R.M. Asherova, Č. Burd́ık, M. Havĺıček, Yu.F. Smirnov and V.N. Tolstoy
B
(α)
kj (r) = − [r]
[ϕkj − r + 1]
b
(α)−
k (r)b(α)−
j , B
(α)
kl = − [r]
[ϕkl − r]
b
(α)−
k (r)b(α)+
l ,
γ
(α)
k (r) = [r][ϕk,n+1 − α− r]b(α)−
k (r) (1 ≤ j ≤ α < k, l ≤ n; r ∈ N), (3.21)
where
b
(α)+
i (r) =
(
i−1∏
s=1
[ϕis + r]
[ϕis + r − 1]
)(
n∏
s=α+1
[ϕis + r − 1]
[ϕis + r]
)
(1 ≤ i ≤ α), (3.22)
b
(α)−
j =
(
j−1∏
s=1
[ϕjs − 1]
[ϕjs]
)(
n∏
s=α+1
[ϕjs]
[ϕjs − 1]
)
(1 ≤ j ≤ α), (3.23)
b
(α)−
k (r) =
(
α∏
s=1
[ϕks − r + 1]
[ϕks − r]
)(
n∏
s=k+1
[ϕks − r]
[ϕks − r + 1]
)
(α + 1 ≤ k ≤ n), (3.24)
b
(α)+
l =
(
α∏
s=1
[ϕls]
[ϕls + 1]
)(
n∏
s=l+1
[ϕls + 1]
[ϕls]
)
(α + 1 ≤ l ≤ n). (3.25)
Here in (3.16), (3.17) and thoughtout in Section 4 we use the short notation of the q-factorial
[x+n]! = [x+n][x+n−1] · · · [x+1][x]! instead the q-Gamma function, [x+n]! ≡ Γq([x+n+1]).
Sketch of proof. The relations (3.15)–(3.17) are a direct consequence of the relations (3.3)–
(3.5). Relations (3.18) and (3.19) with the coefficients (3.20)–(3.25) are proved by induction on
r using the initial relations (3.9) and (3.10) with the coefficients (3.11)–(3.14) for r = 1. �
4 Shapovalov forms on Zq(gl(n + 1), gl(n))
Let us consider properties of the Z-algebra Zq(gl(n+1), gl(n)) with respect to the involutions ?
(2.26)–(2.28), and ∗ (2.30)–(2.33).
Proposition 3. The Z-algebra Zq(gl(n+1), gl(n)) is invariant with respect to the involutions ?
and ∗, besides
z?
0 = z0, z?
i = z−i for i = ±1,±2, . . . ,±n, (4.1)
and
z∗0 = z0, z∗i = −z−i for i = ±1,±2, . . . ,±n. (4.2)
Proof. Because the extremal projector p = p(gl(n)) is >-invariant, p> = p for > = ?, ∗ (see
the formula (2.29)), it turns out that
z>
i = pe>
i,n+1p, z>
−i = pe>
n+1,ip for i = 1, 2, . . . , n.
If q is circular, then e>
i,n+1 = ±en+1,i, e>
n+1,i = ±ei,n+1, where the plus belongs to the compact
case and the minus belongs to the noncompact case, and we obtain the formulas (4.1) and (4.2).
If q is real, then e>
n+1,i = ±e′i,n+1, e>
i,n+1 = ±e′n+1,i where the root vectors e′i,n+1 and e′n+1,i
are obtained from (2.10) by the replacement q±1 → q∓1. Let us consider the difference z>
−i−zi =
p(e′i,n+1 − ei,n+1)p for 1 ≤ i ≤ n). Substituting here (see the formulas (2.11))
e′i,n+1 = e′inen,n+1 − q−1en,n+1e
′
in, ei,n+1 = einen,n+1 − qen,n+1ein, (4.3)
q-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra Uq(u(n, 1)) 9
and using the annihilation properties of the projector p (see (2.25)) we obtain z>
−i− zi = p(e′in−
ein)en,n+1p. In a similar way, using explicit formulas of type (4.3) for the generators e′in and ein,
we obtain z>
−i − zi = p(e′i,n−1 − ei,n−1)en−1,nen,n+1p. By proceeding as above, we have z>
−i −
zi = p(ei,i+1 − ei,i+1)ei+1,i+2ei+2,i+3 · · · en−1,nen,n+1p = 0. In a similar way, we prove that
z>
i − z−i = 0. �
The Z-algebra Zq(gl(n+1), gl(n)) with the involution ? is called the compact real form and is
denoted by the symbol Z
(c)
q (gl(n + 1), gl(n)). The noncompact real form on Zq(gl(n + 1), gl(n))
is defined by the involution ∗ and is denoted by the symbol Z
(nc)
q (gl(n + 1), gl(n)).
Let p(α) be an extremal projector for Zq(gl(n + 1), gl(n)) satisfying the relations
z−ip
(α) = p(α)zi for i = 1, 2, . . . , α,
zkp
(α) = p(α)z−k for k = α + 1, α + 2, . . . , n,
[eii, p
(α)] = 0 for i = 1, 2, . . . , n.
The extremal projector p(α) depends on the index α that defines what elements are consi-
dered as “raising” and what elements are considered as “lowering”, i.e. in our case the ele-
ments z−1, z−2, . . . , z−α, zα+1, . . . , zn are raising and the elements z1, z2, . . . , zα, z−α−1, . . . , z−n
are lowering. It should be stressed that the “raising” and “lowering” subsets generate disjoint
subalgebras in Zq(gl(n + 1), gl(n)). The operator p(α) can be constructed in an explicit form.
Let us introduce on Z
(nc)
q (gl(n + 1), gl(n)) the following sesquilinear Shapovalov form [16].
For any elements x, y ∈ Z
(nc)
q (gl(n + 1), gl(n)) we set
B(α)(x, y) = p(α)y∗xp(α). (4.4)
Therefore, the Shapovalov form also depends on the index α (α = 0, 1, 2, . . . , n). We fix α
(α = 0, 1, 2, . . . , n) and for each set of nonnegative integers {r} = (r1, r2, . . . , rn) introduce
a vector v
(α)
{r} in the space Z
(nc)
q (gl(n + 1), gl(n)) by the formula
v
(α)
{r} = zrα
α · · · zr1
1 zrα+1
−α−1 · · · z
rn
−n. (4.5)
Theorem 2. For each fixed α (α = 0, 1, 2, . . . , n) the vectors {v(α)
{r}} are pairwise orthogonal with
respect to the Shapovalov form (4.4)
B(α)
(
v
(α)
{r}, v
(α)
{r′}
)
= δ{r},{r′}B
(α)
(
v
(α)
{r}, v
(α)
{r}
)
. (4.6)
and
B(α)
(
v
(α)
{r}, v
(α)
{r}
)
=
(
α∏
i=1
[ri]![ϕi,n+1 − α + ri − 1]!
[ϕi,n+1 − α− 1]!
n∏
l=α+1
[rl]![ϕn+1,l + α + rl]!
[ϕn+1,l + α]!
×
∏
1≤i<j≤α
[ϕij + ri − rj ]![ϕij − 1]!
[ϕij + ri]![ϕij − rj − 1]!
∏
α+1≤k<l≤n
[ϕkl − rk + rl]![ϕkl − 1]!
[ϕkl − rk − 1]![ϕkl + rl]!
×
∏
1≤i≤α<l≤n
[ϕil + ri − 1]![ϕil + rl − 1]![ϕil]
[ϕil + ri + rl]![ϕil − 1]!
)
z
(α)
0 , (4.7)
where z
(α)
0 ≡ p(α).
10 R.M. Asherova, Č. Burd́ık, M. Havĺıček, Yu.F. Smirnov and V.N. Tolstoy
As a consequence of this theorem we obtain that the Shapovalov form is not degenerate on
a subspace of Z
(nc)
q (gl(n + 1), gl(n)), generated by the vectors of form (4.5).
In the case of the compact Z-algebra Z
(c)
q (gl(n + 1), gl(n)) the Shapovalov form B(x, y) is
defined by formula (4.4) where α = 0, p(0) is the standard extremal projector of the quantum
algebra Uq(gl(n+1)) and the involution is given by formulas (4.1). It is not difficult to see that
B(v{r}, v{r′}) = δ{r},{r′}B(v{r}, v{r}).
where v{r} := v
(0)
{r} and
B(v{r}, v{r}) = (−1)
n∑
i=1
ri
B(0)
(
v
(0)
{r}, v
(0)
{r}
)
=
n∏
l=1
[rl]![ϕl,n+1 − 1]!
[ϕl,n+1 − rl − 1]!
∏
1≤k<l≤n
[ϕkl − rk + rl]![ϕkl − 1]!
[ϕkl − rk − 1]![ϕkl + rl]!
z
(0)
0 .
5 Discrete series of representations for Uq(u(n, 1))
As in the classical case [9] each Hermitian irreducible representation of the discrete series for the
noncompact quantum algebra Uq(u(n, 1)) is defined uniquely by some extremal vector |xw〉, the
vector of extremal weight4. This vector should be the highest vector with respect to the compact
subalgebra Uq(u(n)) ⊕ Uq(u(1)). Since the quantum algebra Uq(u(1)) is generated only by one
Cartan element qen+1,n+1 , the vector |xw〉 should be annihilated by the raising generators eij
(1 ≤ i < j ≤ n) of the compact subalgebra Uq(u(n)). So the vector |xw〉 satisfies the relations
eii|xw〉 = µi|xw〉 (i = 1, 2, . . . , n + 1),
eij |xw〉 = 0 (1 ≤ i < j ≤ n),
where the weight components µi (i = 1, 2, . . . , n) are integers subjected to the condition µ1 ≥
µ2 ≥ · · · ≥ µn. Such weights can be compared with respect to standard lexicographic ordering,
namely, µ > µ′, where µ = (µ1, µ2, . . . , µn) and µ′ = (µ′1, µ
′
2, . . . , µ
′
n), if a first nonvanishing
component of the difference µ− µ′ is positive.
The component µn+1 is also an integer. In the general case of finite-dimensional irreducible
representations of the compact quantum algebra Uq(u(n)) ⊕ Uq(u(1)), the weights µ=(µ1, µ2,
. . . , µn) and µn+1 are not ordering. If we choose some ordering for these weights, for example,
(µ1, . . . , µα, µn+1, µα+1, . . . , µn), then such n + 1-component weights can be compared.
The extremal vector |xw〉 has the minimal weight Λ(α)
n+1 := (λ1,n+1, λ2,n+1, . . . , λn+1,n+1)
where λi,n+1 := µi (i = 1, 2, . . . , α), λα+1,n+1 := µn+1, λl+1,n+1 := µl (l = α + 1, . . . , n). The
vector |Λ(α)
n+1〉 := |xw〉 with the weight Λ(α)
n+1 satisfies the relations
z−i|Λ(α)
n+1〉 = 0, for i = 1, 2, . . . , α,
zk|Λ
(α)
n+1〉 = 0, for k = α + 1, α + 2, . . . , n.
It is evident that any highest weight vector |Λ(α)
n+1; Λn) with respect to the compact subalgebra
Uq(u(n)) has the form
|Λ(α)
n+1; Λn) = zrα
α · · · zr1
1 z
rα+1
−α−1 · · · z
rn
−n|Λ
(α)
n+1〉. (5.1)
4We assume that the vector |xw〉 is orthonormal, 〈xw|xw〉 = 1.
q-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra Uq(u(n, 1)) 11
Here the integers {r} are defined by the weights Λ(α)
n+1 = (λ1,n+1, λ2,n+1, . . . , λn+1,n+1), where
λi,n+1 ≥ λi+1,n+1 (i = 1, 2, . . . , n), and Λn = (λ1n, λ2n, . . . , λnn), where λin ≥ λi+1,n (i =
1, 2, . . . , n− 1), namely,
ri = λin − λi,n+1 (i = 1, . . . , α),
rl = λl+1,n+1 − λln (l = α + 1, . . . , n).
If we would like to calculate the scalar product of the two vectors (5.1) then using the results
for the Shapovalov form (4.6), (4.7) we obtain(
Λn; Λ(α)
n+1|Λ
(α)
n+1; Λ
′
n
)
= δΛn,Λ′
n
(
Λn; Λ(α)
n+1|Λ
(α)
n+1; Λn
)
,(
Λn; Λ(α)
n+1|Λ
(α)
n+1; Λn
)
= B(α)
(
v
(α)
{r}, v
(α)
{r}
)∣∣∣
Λ
(α)
n+1
,
where the symbol |
Λ
(α)
n+1
means that we specialize the Shapovalov form (4.7) for the extremal
weight Λn+1, that is we replace the Cartan elements eii, ejj in the functions ϕij by the corre-
sponding components λi,n+1, λj,n+1 and z0 by 1.
From the condition that(
Λn; Λ(α)
n+1|Λ
(α)
n+1; Λn
)
> 0
we find all admissible highest weights Λn of the compact subalgebra Uq(u(n)). The result is
formulated as the theorem
Theorem 3. 1) Every Hermitian irreducible representation of the discrete series for the non-
compact quantum algebra Uq(u(n, 1)) with the extremal weight Λ(α)
n+1 = (λ1,n+1, . . . , λn+1,n+1),
where the integers λi,n+1 satisfy the inequalities λi,n+1 ≥ λi+1,n+1 (i = 1, 2, . . . , n), under the
restriction Uq(u(n, 1)) ↓ Uq(u(n)) contains all multiplicity free irreducible representations of the
compact subalgebra Uq(u(n)) with the highest weights Λn = (λ1n, λ2n, . . . , λnn) satisfying the
conditions:
λ1n ≥ λ1,n+1 ≥ λ2,n ≥ λ2,n+1 ≥ · · · ≥ λαn ≥ λα,n+1,
λα+2,n+1 ≥ λα+1,n ≥ λα+3,n+1 ≥ · · · ≥ λn+1,n+1 ≥ λnn. (5.2)
2) The vectors
|Λ(α)
n+1; Λn〉 = F
(α)
− (Λn; Λ(α)
n+1) |Λ
(α)
n+1〉,
where the “lowering” operator F
(α)
− (Λn; Λ(α)
n+1) is given by
F
(α)
−
(
Λn; Λ(α)
n+1
)
= N (α)
(
Λn; Λ(α)
n+1
)
z
λαn−λα,n+1
α · · · zλ1n−λ1,n+1
1
× z
λα+2,n+1−λα+1,n
−α−1 · · · zλn+1,n+1−λnn
−n , (5.3)
for all highest wights Λn = (λ1n, λ2n, . . . , λnn) constrained by the conditions (5.2) form an
orthonormal basis in the space of the highest vectors with respect to the compact subalgebra
Uq(u(n)). Here in (5.3) the normalized factor N (α)(Λn; Λ(α)
n+1) is given as follows:
N (α)
(
Λn; Λ(α)
n+1
)
=
(
Λn; Λ(α)
n+1|Λ
(α)
n+1; Λn
)− 1
2
=
{
α∏
i=1
[li,n+1 − lα+1,n+1 − 2α + n− 1]!
[lin − li,n+1]![li,n − lα+1,n+1 − 2α + n− 1]!
12 R.M. Asherova, Č. Burd́ık, M. Havĺıček, Yu.F. Smirnov and V.N. Tolstoy
×
n∏
l=α+1
[lα+1,n+1 − ll+1,n+1 + 2α− n− 1]!
[ll+1,n+1 − lln − 1]![lα+1,n+1 − lln + 2α− n]!
×
∏
1≤i<j≤α
[lin − lj,n+1]![li,n+1 − ljn − 1]!
[lin − ljn]![li,n+1 − lj,n+1 − 1]!
×
∏
α+1≤k<l≤n
[lkn − ll+1,n+1 − 2]![lk+1,n+1 − lln + 1]!
[lkn − lln]![lk+1,n+1 − ll+1,n+1 − 1]!
×
∏
1≤i≤α<l≤n
[lin − lln]![li,n+1 − ll+1,n+1 − 2]!
[lin − ll+1,n+1 − 2]![li,n+1 − lln − 1]![li,n+1 − ll+1,n+1 − 1]
} 1
2
(lsr := λsr − s for s = 1, 2, . . . , r; r = n, n + 1).
The first part of the theorem coincides with the classical Gelfand–Graev case [5, 6] for the
noncompact Lie algebra u(n, 1). Using analogous construction of the Gelfand–Tsetlin basis for
the compact quantum algebra Uq(u(n)) [14] we obtain a q-analog of the Gelfand–Graev–Tsetlin
basis for Uq(u(n, 1)). Namely, in the Uq(u(n, 1))-module with the extremal weight Λ(α)
n+1 there is
an orthogonal Gelfand–Graev–Tsetlin basis consisting of all vectors of the form
∣∣Λ〉 :=
∣∣∣∣∣∣∣∣∣∣
Λ(α)
n+1
Λn
. . .
Λ2
Λ1
= F−(Λ1; Λ2)F−(Λ2; Λ3) · · ·F−(Λn−1; Λn)|Λ(α)
n+1; Λn〉,
where Λj = (λ1j , λ2j , . . . , λjj) (j = 1, 2, . . . , n) and the numbers λij satisfy the standard “be-
tween conditions” for the quantum algebra Uq(u(n)), i.e.
λi,j+1 ≥ λij ≥ λi+1,j+1 for 1 ≤ i ≤ j ≤ n− 1.
The lowering operators F−(Λk; Λk+1) (k = 1, 2, . . . , n− 1) are given by (see [14, 15])
F−(Λk; Λk+1) = N(Λk; Λk+1)p(Uq(u(k)))
k∏
i=1
(ek+1i)λik+1−λik ,
N(Λk; Λk+1) =
{
k∏
i=1
[lik − lk+1,k+1 − 1]!
[li,k+1 − lik]![li,k+1 − lk+1,k+1 − 1]!
×
∏
1≤i<j≤k
[li,k+1 − ljk]![lik − lj,k+1 − 1]!
[lik − ljk]![li,k+1 − lj,k+1 − 1]!
} 1
2
,
where lij := λij − i for 1 ≤ i ≤ j ≤ n − 1. This explicit construction allows one to obtain
formulas for actions of the Uq(u(n, 1))-generators. These results will be presented elsewhere.
6 Summary
Thus, we obtain the explicit description of the Hermitian irreducible representations of the
discrete series for the noncompact quantum algebra Uq(u(n, 1)) by the reduction Z-algebras for
description of which we used the standard extremal projectors.
Next step: to obtain analogous results for Uq(u(n, 2)). For this aim we need to construct the
extremal projector p(α) which is expressed in terms of the Z-algebra Zq(gl(n + 1), gl(n)).
Final aim: to consider the general case Uq(u(n, m)). In this case, extremal projectors of new
type will be used.
q-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra Uq(u(n, 1)) 13
Acknowledgments
The paper has been supported by grant RFBR-08-01-00392 (R.M.A., V.N.T.) and by grant
RFBR-09-01-93106-NCNIL-a (V.N.T.). The fifth author would like to thank Department of
Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University
in Prague for hospitality.
References
[1] Gel’fand I.M., Tsetlin M.L., Finite-dimensional representations of unimodular matrices group, Doklady
Akad. Nauk SSSR 71 (1950), 825–828 (in Russian).
[2] Nagel J.G., Moshinsky M., Operators that lower or raise the irreducible vector spaces of Un−1 contained in
an irreducible vector space of Un, J. Math. Phys. 6 (1965), 682–694.
[3] Hou P.-Y., Orthonormal bases and infinitesimal operators of the irreducible representations of group Un,
Sci. Sinica 15 (1966), 763–772.
[4] Asherova R.M., Smirnov Yu.F., Tolstoy V.N., Projection operators for the simple Lie groups. II. General
scheme for construction of lowering operators. The case of the group SU(n), Teoret. Mat. Fiz. 15 (1973),
no. 1, 107–119 (in Russian).
[5] Gelfand I.M., Graev M.I., Finite-dimensional irreducible representations of unitary and general linear groups
and related special functions, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), no. 6, 1329–1356 (English transl.:
Amer. Math. Soc. Transl. (2) 64 (1967), 116–146).
[6] Barut A., Ra̧czka R., Theory of group representations and applications, Polish Scientific Publishers, Warsaw,
1977.
[7] Enright T.J., Varadarajan V.S., On an infinitesimal characterization of the discrete series, Ann. of Math. (2)
102 (1975), 1–15.
[8] Molev A.I., Unitarizability of some Enright–Varadarajan u(p, q)-modules, in Topics in Representation Theo-
ry, Adv. Soviet Math., Vol. 2, Amer. Math. Soc., Providence, RI, 1991, 199–219.
[9] Mickelsson J., A description of discrete series using step algebra, Math. Scand. 41 (1977), 63–78.
[10] Smirnov Yu.F., Kharitonov Yu.I., Noncompact quantum algebra uq(2, 1): positive discrete series of irre-
ducible representations, in Proceedings of International Symposium “Symmetries in Science XI” (July 2003,
Bregenz, Austria), Editors B. Gruber, G. Marmo and N. Ioshinaga, Kluwer Acad. Publ., Dordrecht, 2004,
505–526, math.QA/0311283.
[11] Smirnov Yu.F., Kharitonov Yu.I., Asherova R.M., Noncompact quantum algebra uq(2, 1): intermediate
discrete series of unitary irreducible representations, Phys. Atomic Nuclei 69 (2006), 1045–1057.
[12] Groza V.A., Iorgov N.Z., Klimyk A.U., Representations of the quantum algebra Uq(un,1), Algebr. Represent.
Theory 3 (2000), 105–130, math.QA/9805032.
[13] Guizzi V., A classification of unitary highest weight modules of the quantum analogue of the symmetric
pair (An, An−1), J. Algebra 192 (1997), 102–129.
[14] Tolstoy V.N., Extremal projectors for quantized Kac–Moody superalgebras and some of their applications,
in Quantum Groups (Clausthal, 1989), Lecture Notes in Phys., Vol. 370, Springer, Berlin, 1990, 118–125.
[15] Tolstoy V.N., Projection operator method for quantum groups, in Special Functions 2000: Current Perspec-
tive and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, Kluwer Acad.
Publ., Dordrecht, 2001, 457–488, math.QA/0104045.
[16] Shapovalov N.N., On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra,
Funct. Anal. Appl. 6 (1972), 307–312.
http://dx.doi.org/10.1063/1.1704326
http://dx.doi.org/10.2307/1970970
http://arxiv.org/abs/math.QA/0311283
http://dx.doi.org/10.1134/S1063778806060159
http://dx.doi.org/10.1023/A:1009906111602
http://dx.doi.org/10.1023/A:1009906111602
http://arxiv.org/abs/math.QA/9805032
http://dx.doi.org/10.1006/jabr.1996.6909
http://arxiv.org/abs/math.QA/0104045
http://dx.doi.org/10.1007/BF01077650
1 Introduction
2 Quantum algebra Uq(gl(N)) and its noncompact real forms Uq(u(n,m)) (n+m=N)
3 The reduction algebra Zq(gl(n+1),gl(n))
4 Shapovalov forms on Zq(gl(n+1),gl(n))
5 Discrete series of representations for Uq(u(n,1))
6 Summary
References
|