Krein Spaces in de Sitter Quantum Theories

Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1,4) or Sp(2,2) as an appealing substitute to the flat space-time Poincaré relativity. Quantum elementary systems are then associated to unitary irreducible represent...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2010
Main Authors: Gazeau, J.P., Siegl, P., Youssef, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146149
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Krein Spaces in de Sitter Quantum Theories / J.P. Gazeau, P. Siegl, A. Youssef // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1,4) or Sp(2,2) as an appealing substitute to the flat space-time Poincaré relativity. Quantum elementary systems are then associated to unitary irreducible representations of that simple Lie group. At the lowest limit of the discrete series lies a remarkable family of scalar representations involving Krein structures and related undecomposable representation cohomology which deserves to be thoroughly studied in view of quantization of the corresponding carrier fields. The purpose of this note is to present the mathematical material needed to examine the problem and to indicate possible extensions of an exemplary case, namely the so-called de Sitterian massless minimally coupled field, i.e. a scalar field in de Sitter space-time which does not couple to the Ricci curvature.
ISSN:1815-0659