Krein Spaces in de Sitter Quantum Theories

Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1,4) or Sp(2,2) as an appealing substitute to the flat space-time Poincaré relativity. Quantum elementary systems are then associated to unitary irreducible represent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2010
Hauptverfasser: Gazeau, J.P., Siegl, P., Youssef, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146149
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Krein Spaces in de Sitter Quantum Theories / J.P. Gazeau, P. Siegl, A. Youssef // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146149
record_format dspace
spelling Gazeau, J.P.
Siegl, P.
Youssef, A.
2019-02-07T19:05:51Z
2019-02-07T19:05:51Z
2010
Krein Spaces in de Sitter Quantum Theories / J.P. Gazeau, P. Siegl, A. Youssef // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81T20; 81R05; 81R20; 22E70; 20C35
https://nasplib.isofts.kiev.ua/handle/123456789/146149
Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1,4) or Sp(2,2) as an appealing substitute to the flat space-time Poincaré relativity. Quantum elementary systems are then associated to unitary irreducible representations of that simple Lie group. At the lowest limit of the discrete series lies a remarkable family of scalar representations involving Krein structures and related undecomposable representation cohomology which deserves to be thoroughly studied in view of quantization of the corresponding carrier fields. The purpose of this note is to present the mathematical material needed to examine the problem and to indicate possible extensions of an exemplary case, namely the so-called de Sitterian massless minimally coupled field, i.e. a scalar field in de Sitter space-time which does not couple to the Ricci curvature.
This paper is a contribution to the Proceedings of the 5-th Microconference “Analytic and Algebraic Methods V”. The full collection is available at http://www.emis.de/journals/SIGMA/Prague2009.html. Throughout this text, for convenience, we will mostly work in units c = 1 = ~, for which R = H−1, while restoring physical units when is necessary. P. Siegl appreciates the support of CTU grant No.CTU0910114 and MSMT project No.LC06002
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Krein Spaces in de Sitter Quantum Theories
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Krein Spaces in de Sitter Quantum Theories
spellingShingle Krein Spaces in de Sitter Quantum Theories
Gazeau, J.P.
Siegl, P.
Youssef, A.
title_short Krein Spaces in de Sitter Quantum Theories
title_full Krein Spaces in de Sitter Quantum Theories
title_fullStr Krein Spaces in de Sitter Quantum Theories
title_full_unstemmed Krein Spaces in de Sitter Quantum Theories
title_sort krein spaces in de sitter quantum theories
author Gazeau, J.P.
Siegl, P.
Youssef, A.
author_facet Gazeau, J.P.
Siegl, P.
Youssef, A.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1,4) or Sp(2,2) as an appealing substitute to the flat space-time Poincaré relativity. Quantum elementary systems are then associated to unitary irreducible representations of that simple Lie group. At the lowest limit of the discrete series lies a remarkable family of scalar representations involving Krein structures and related undecomposable representation cohomology which deserves to be thoroughly studied in view of quantization of the corresponding carrier fields. The purpose of this note is to present the mathematical material needed to examine the problem and to indicate possible extensions of an exemplary case, namely the so-called de Sitterian massless minimally coupled field, i.e. a scalar field in de Sitter space-time which does not couple to the Ricci curvature.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146149
citation_txt Krein Spaces in de Sitter Quantum Theories / J.P. Gazeau, P. Siegl, A. Youssef // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ.
work_keys_str_mv AT gazeaujp kreinspacesindesitterquantumtheories
AT sieglp kreinspacesindesitterquantumtheories
AT youssefa kreinspacesindesitterquantumtheories
first_indexed 2025-12-01T05:17:09Z
last_indexed 2025-12-01T05:17:09Z
_version_ 1850859363337502720