Bäcklund Transformations for the Trigonometric Gaudin Magnet

We construct a Bäcklund transformation for the trigonometric classical Gaudin magnet starting from the Lax representation of the model. The Darboux dressing matrix obtained depends just on one set of variables because of the so-called spectrality property introduced by E. Sklyanin and V. Kuznetsov....

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2010
Main Authors: Ragnisco, O., Zullo, F.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146150
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Bäcklund Transformations for the Trigonometric Gaudin Magnet / O. Ragnisco, F. Zullo // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146150
record_format dspace
spelling Ragnisco, O.
Zullo, F.
2019-02-07T19:06:51Z
2019-02-07T19:06:51Z
2010
Bäcklund Transformations for the Trigonometric Gaudin Magnet / O. Ragnisco, F. Zullo // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 13 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37J35; 70H06; 70H15
https://nasplib.isofts.kiev.ua/handle/123456789/146150
We construct a Bäcklund transformation for the trigonometric classical Gaudin magnet starting from the Lax representation of the model. The Darboux dressing matrix obtained depends just on one set of variables because of the so-called spectrality property introduced by E. Sklyanin and V. Kuznetsov. In the end we mention some possibly interesting open problems.
This paper is a contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Systems and Quantum Symmetries (June 18–20, 2009, Prague, Czech Republic). The full collection is available at http://www.emis.de/journals/SIGMA/ISQS2009.html. This paper is intended to be a contribution to the Proceedings of the International Conference “Integrable Systems and Quantum Symmetries 2009”, organized by Professor C. Burd´ık and held ˇ in Prague, June 18–20, 2009. One of the authors (O.R.) wants to warmly thank for his hospitality the Newton Institute for Mathematical Sciences, and all the organizers and the participants to the Program “Discrete Integrable Systems”. It was in fact during his stay in Cambridge that the main ideas presented in the paper have been made precise. Also, he acknowledges enlightening discussions with A. Levine (ITEF) at the workshop “Einstein at SISSA 2009”, partially funded by the Russian Foundation for Basic Research within the project “The Theory of Nonlinear Integrable Systems”
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Bäcklund Transformations for the Trigonometric Gaudin Magnet
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Bäcklund Transformations for the Trigonometric Gaudin Magnet
spellingShingle Bäcklund Transformations for the Trigonometric Gaudin Magnet
Ragnisco, O.
Zullo, F.
title_short Bäcklund Transformations for the Trigonometric Gaudin Magnet
title_full Bäcklund Transformations for the Trigonometric Gaudin Magnet
title_fullStr Bäcklund Transformations for the Trigonometric Gaudin Magnet
title_full_unstemmed Bäcklund Transformations for the Trigonometric Gaudin Magnet
title_sort bäcklund transformations for the trigonometric gaudin magnet
author Ragnisco, O.
Zullo, F.
author_facet Ragnisco, O.
Zullo, F.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct a Bäcklund transformation for the trigonometric classical Gaudin magnet starting from the Lax representation of the model. The Darboux dressing matrix obtained depends just on one set of variables because of the so-called spectrality property introduced by E. Sklyanin and V. Kuznetsov. In the end we mention some possibly interesting open problems.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146150
citation_txt Bäcklund Transformations for the Trigonometric Gaudin Magnet / O. Ragnisco, F. Zullo // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT ragniscoo backlundtransformationsforthetrigonometricgaudinmagnet
AT zullof backlundtransformationsforthetrigonometricgaudinmagnet
first_indexed 2025-12-07T15:31:11Z
last_indexed 2025-12-07T15:31:11Z
_version_ 1850864012084903936