Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾

We study an integrable vertex model with a periodic boundary condition associated with Uq(An⁽¹⁾ at the crystallizing point q=0. It is an (n+1)-state cellular automaton describing the factorized scattering of solitons. The dynamics originates in the commuting family of fusion transfer matrices and ge...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2010
Main Authors: Kuniba, A., Takagi, T.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146151
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾ / A. Kuniba, T. Takagi // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 41 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146151
record_format dspace
spelling Kuniba, A.
Takagi, T.
2019-02-07T19:10:13Z
2019-02-07T19:10:13Z
2010
Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾ / A. Kuniba, T. Takagi // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 41 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 82B23; 37K15; 68R15; 37B1
https://nasplib.isofts.kiev.ua/handle/123456789/146151
We study an integrable vertex model with a periodic boundary condition associated with Uq(An⁽¹⁾ at the crystallizing point q=0. It is an (n+1)-state cellular automaton describing the factorized scattering of solitons. The dynamics originates in the commuting family of fusion transfer matrices and generalizes the ultradiscrete Toda/KP flow corresponding to the periodic box-ball system. Combining Bethe ansatz and crystal theory in quantum group, we develop an inverse scattering/spectral formalism and solve the initial value problem based on several conjectures. The action-angle variables are constructed representing the amplitudes and phases of solitons. By the direct and inverse scattering maps, separation of variables into solitons is achieved and nonlinear dynamics is transformed into a straight motion on a tropical analogue of the Jacobi variety. We decompose the level set into connected components under the commuting family of time evolutions and identify each of them with the set of integer points on a torus. The weight multiplicity formula derived from the q=0 Bethe equation acquires an elegant interpretation as the volume of the phase space expressed by the size and multiplicity of these tori. The dynamical period is determined as an explicit arithmetical function of the n-tuple of Young diagrams specifying the level set. The inverse map, i.e., tropical Jacobi inversion is expressed in terms of a tropical Riemann theta function associated with the Bethe ansatz data. As an application, time average of some local variable is calculated.
This paper is a contribution to the Proceedings of the Workshop “Geometric Aspects of Discrete and UltraDiscrete Integrable Systems” (March 30 – April 3, 2009, University of Glasgow, UK). The full collection is available at http://www.emis.de/journals/SIGMA/GADUDIS2009.html. A.K. thanks Rei Inoue, Masato Okado, Reiho Sakamoto, Mark Shimozono, Alexander Veselov, Yasuhiko Yamada for discussion, and Claire Gilson, Christian Korf f and Jon Nimmo for a warm hospitality during the conference, Geometric Aspects of Discrete and Ultra-Discrete Integrable Systems, March 30 – April 3, 2009, Glasgow, UK. This work is partially supported by Grandin-Aid for Scientific Research JSPS No. 21540209.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾
spellingShingle Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾
Kuniba, A.
Takagi, T.
title_short Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾
title_full Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾
title_fullStr Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾
title_full_unstemmed Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾
title_sort bethe ansatz, inverse scattering transform and tropical riemann theta function in a periodic soliton cellular automaton for an⁽¹⁾
author Kuniba, A.
Takagi, T.
author_facet Kuniba, A.
Takagi, T.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study an integrable vertex model with a periodic boundary condition associated with Uq(An⁽¹⁾ at the crystallizing point q=0. It is an (n+1)-state cellular automaton describing the factorized scattering of solitons. The dynamics originates in the commuting family of fusion transfer matrices and generalizes the ultradiscrete Toda/KP flow corresponding to the periodic box-ball system. Combining Bethe ansatz and crystal theory in quantum group, we develop an inverse scattering/spectral formalism and solve the initial value problem based on several conjectures. The action-angle variables are constructed representing the amplitudes and phases of solitons. By the direct and inverse scattering maps, separation of variables into solitons is achieved and nonlinear dynamics is transformed into a straight motion on a tropical analogue of the Jacobi variety. We decompose the level set into connected components under the commuting family of time evolutions and identify each of them with the set of integer points on a torus. The weight multiplicity formula derived from the q=0 Bethe equation acquires an elegant interpretation as the volume of the phase space expressed by the size and multiplicity of these tori. The dynamical period is determined as an explicit arithmetical function of the n-tuple of Young diagrams specifying the level set. The inverse map, i.e., tropical Jacobi inversion is expressed in terms of a tropical Riemann theta function associated with the Bethe ansatz data. As an application, time average of some local variable is calculated.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146151
citation_txt Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for An⁽¹⁾ / A. Kuniba, T. Takagi // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 41 назв. — англ.
work_keys_str_mv AT kunibaa betheansatzinversescatteringtransformandtropicalriemannthetafunctioninaperiodicsolitoncellularautomatonforan1
AT takagit betheansatzinversescatteringtransformandtropicalriemannthetafunctioninaperiodicsolitoncellularautomatonforan1
first_indexed 2025-12-07T20:30:05Z
last_indexed 2025-12-07T20:30:05Z
_version_ 1850882817312948224