Q-system Cluster Algebras, Paths and Total Positivity

In the first part of this paper, we provide a concise review of our method of solution of the Ar Q-systems in terms of the partition function of paths on a weighted graph. In the second part, we show that it is possible to modify the graphs and transfer matrices so as to provide an explicit connecti...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2010
Автори: di Francesko, P., Kedem, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146152
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Q-system Cluster Algebras, Paths and Total Positivity / P. di Francesco, R. Kedem // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146152
record_format dspace
spelling di Francesko, P.
Kedem, R.
2019-02-07T19:11:41Z
2019-02-07T19:11:41Z
2010
Q-system Cluster Algebras, Paths and Total Positivity / P. di Francesco, R. Kedem // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 05E10; 13F16; 82B20
https://nasplib.isofts.kiev.ua/handle/123456789/146152
In the first part of this paper, we provide a concise review of our method of solution of the Ar Q-systems in terms of the partition function of paths on a weighted graph. In the second part, we show that it is possible to modify the graphs and transfer matrices so as to provide an explicit connection to the theory of planar networks introduced in the context of totally positive matrices by Fomin and Zelevinsky. As an illustration of the further generality of our method, we apply it to give a simple solution for the rank 2 affine cluster algebras studied by Caldero and Zelevinsky.
This paper is a contribution to the Proceedings of the Workshop “Geometric Aspects of Discrete and UltraDiscrete Integrable Systems” (March 30 – April 3, 2009, University of Glasgow, UK). The full collection is available at http://www.emis.de/journals/SIGMA/GADUDIS2009.html. We thank M. Gekhtman, S. Fomin, A. Postnikov, N. Reshetikhin and A. Vainshtein for useful discussions. RK’s research is funded in part by NSF grant DMS-0802511. RK thanks CEA/Saclay IPhT for their hospitality. PDF’s research is partly supported by the European network grant ENIGMA and the ANR grants GIMP and GranMa. PDF thanks the department of Mathematics of the University of Illinois at Urbana-Champaign for hospitality and support, and the department of Mathematics of the University of California Berkeley for hospitality
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Q-system Cluster Algebras, Paths and Total Positivity
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Q-system Cluster Algebras, Paths and Total Positivity
spellingShingle Q-system Cluster Algebras, Paths and Total Positivity
di Francesko, P.
Kedem, R.
title_short Q-system Cluster Algebras, Paths and Total Positivity
title_full Q-system Cluster Algebras, Paths and Total Positivity
title_fullStr Q-system Cluster Algebras, Paths and Total Positivity
title_full_unstemmed Q-system Cluster Algebras, Paths and Total Positivity
title_sort q-system cluster algebras, paths and total positivity
author di Francesko, P.
Kedem, R.
author_facet di Francesko, P.
Kedem, R.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In the first part of this paper, we provide a concise review of our method of solution of the Ar Q-systems in terms of the partition function of paths on a weighted graph. In the second part, we show that it is possible to modify the graphs and transfer matrices so as to provide an explicit connection to the theory of planar networks introduced in the context of totally positive matrices by Fomin and Zelevinsky. As an illustration of the further generality of our method, we apply it to give a simple solution for the rank 2 affine cluster algebras studied by Caldero and Zelevinsky.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146152
citation_txt Q-system Cluster Algebras, Paths and Total Positivity / P. di Francesco, R. Kedem // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT difranceskop qsystemclusteralgebraspathsandtotalpositivity
AT kedemr qsystemclusteralgebraspathsandtotalpositivity
first_indexed 2025-12-07T18:09:00Z
last_indexed 2025-12-07T18:09:00Z
_version_ 1850873941074116608