From Noncommutative Sphere to Nonrelativistic Spin
Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of noncommutative theory. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semi...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2010 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2010
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146154 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | From Noncommutative Sphere to Nonrelativistic Spin / A.A. Deriglazov // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146154 |
|---|---|
| record_format |
dspace |
| spelling |
Deriglazov, A.A. 2019-02-07T19:15:26Z 2019-02-07T19:15:26Z 2010 From Noncommutative Sphere to Nonrelativistic Spin / A.A. Deriglazov // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R05; 81R60; 81T75 https://nasplib.isofts.kiev.ua/handle/123456789/146154 Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of noncommutative theory. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semiclassical models for description of spin without use of Grassman variables. The first model implies Pauli equation upon the canonical quantization. The second model produces nonrelativistic limit of the Dirac equation implying correct value for the electron spin magnetic moment. This paper is a contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Systems and Quantum Symmetries (June 18–20, 2009, Prague, Czech Republic). The full collection is available at http://www.emis.de/journals/SIGMA/ISQS2009.html. The work has been supported by the Brazilian foundations CNPq (Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico - Brasil) and FAPEMIG. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications From Noncommutative Sphere to Nonrelativistic Spin Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
From Noncommutative Sphere to Nonrelativistic Spin |
| spellingShingle |
From Noncommutative Sphere to Nonrelativistic Spin Deriglazov, A.A. |
| title_short |
From Noncommutative Sphere to Nonrelativistic Spin |
| title_full |
From Noncommutative Sphere to Nonrelativistic Spin |
| title_fullStr |
From Noncommutative Sphere to Nonrelativistic Spin |
| title_full_unstemmed |
From Noncommutative Sphere to Nonrelativistic Spin |
| title_sort |
from noncommutative sphere to nonrelativistic spin |
| author |
Deriglazov, A.A. |
| author_facet |
Deriglazov, A.A. |
| publishDate |
2010 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of noncommutative theory. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semiclassical models for description of spin without use of Grassman variables. The first model implies Pauli equation upon the canonical quantization. The second model produces nonrelativistic limit of the Dirac equation implying correct value for the electron spin magnetic moment.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146154 |
| citation_txt |
From Noncommutative Sphere to Nonrelativistic Spin / A.A. Deriglazov // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ. |
| work_keys_str_mv |
AT deriglazovaa fromnoncommutativespheretononrelativisticspin |
| first_indexed |
2025-11-25T01:47:31Z |
| last_indexed |
2025-11-25T01:47:31Z |
| _version_ |
1850504030205247488 |
| fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 6 (2010), 016, 8 pages
From Noncommutative Sphere to Nonrelativistic Spin?
Alexei A. DERIGLAZOV
Dept. de Matematica, ICE, Universidade Federal de Juiz de Fora, MG, Brazil
E-mail: alexei.deriglazov@ufjf.edu.br
Received November 12, 2009, in final form January 26, 2010; Published online February 04, 2010
doi:10.3842/SIGMA.2010.016
Abstract. Reparametrization invariant dynamics on a sphere, being parameterized by
angular momentum coordinates, represents an example of noncommutative theory. It can
be quantized according to Berezin–Marinov prescription, replacing the coordinates by Pauli
matrices. Following the scheme, we present two semiclassical models for description of spin
without use of Grassman variables. The first model implies Pauli equation upon the cano-
nical quantization. The second model produces nonrelativistic limit of the Dirac equation
implying correct value for the electron spin magnetic moment.
Key words: noncommutative geometry; nonrelativistic spin
2010 Mathematics Subject Classification: 81R05; 81R60; 81T75
1 Introduction
In their pioneer work [1], Berezin and Marinov have suggested semiclassical description of a spin
based on anticommuting variables. Their prescription can be shortly resumed as follows. For
nonrelativistic spin, an appropriate Lagrangian reads 1
2(ẋi)2 + i
2ξiξ̇i, where the spin inner space
is constructed from vector like Grassmann variables ξi, ξiξj = −ξjξi. Since the Lagrangian is
linear on ξ̇i, their conjugate momenta coincide with ξ, πi = ∂L
∂ξ̇i
= iξi. The relations represent
second class constraints of a Hamiltonian formulation and are taken into account by transition
from Grassmann Poisson bracket to the Dirac one, the latter reads
{ξi, ξj} = iδij . (1)
Dealing with the Dirac bracket, one can resolve the constraints, excluding the momenta from
consideration. It gives very economic scheme for description of a spin: there are only three spin
variables ξi. In accordance with equation (1), canonical quantization is performed replacing
the variables by Pauli σ-matrices, [σi, σj ]+ = 2δij , acting on two dimensional spinor space Ψα.
By this way, formal application of the Dirac method to Grassmann mechanics with constraints
allows one to describe both nonrelativistic and relativistic spinning particle on an external
electromagnetic field, see [2] for a review.
It is naturally to ask whether a similar scheme can be realized with use of commuting variables
only (in this relation, let us point out that there is no generalization of Grassmann mechanics
on higher spins [3]). While description of a spin without Grassmann variables is a problem with
a long history [4], search for spinning particle that would give reasonable classic and quantum
theory remains under investigation up to date [5].
To apply the Berezin–Marinov prescription to commuting variables, one needs to construct
a dynamical system with an inner space endowed with an algebra that can be realized by σ-
matrices (we discuss the nonrelativistic spin). Due to symmetry properties of a Dirac bracket, it
?This paper is a contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Sys-
tems and Quantum Symmetries (June 18–20, 2009, Prague, Czech Republic). The full collection is available at
http://www.emis.de/journals/SIGMA/ISQS2009.html
mailto:alexei.deriglazov@ufjf.edu.br
http://dx.doi.org/10.3842/SIGMA.2010.016
http://www.emis.de/journals/SIGMA/ISQS2009.html
2 A.A. Deriglazov
is not possible to arrive at the anticommutator bracket (1) working with commuting variables,
say Ji. Instead, one can try to produce a bracket of the form {Ji, Jj} = εijkJk, the latter can
also be realized quantum mechanically by σ-matrices. We discuss such a kind possibility in the
present work. Our aim will be to construct a dynamical system that, at the end, admit three
degrees of freedom Ji as the spin space basic variables, the latter obey SO(3) algebra with fixed
value of Casimir operator.
One notices that the spin inner space equipped with SO(3)-algebra represents an example
of noncommutative (NC) system. Idea of noncommutativity became quite popular after the
observation made in [6] that in certain limits string theory can be formulated as an effective
field theory in NC space-time. Some well-known physical systems can be also treated from
NC point of view, an example is a charged particle confined to the plane perpendicular to an
external magnetic field. The space becomes noncommutative in the lowest Landau level [7].
Incorporation of NC geometry into the field theory framework can be naturally achieved
using the Dirac method for analysis the constrained theories: NC geometry arises due to the
Dirac bracket, after taking into account the constraints presented in the model. It seems to be
reasonable approach, since at least the pioneer NC models [7, 8, 6] all can be properly treated by
this way [9, 8]. Moreover, following this way, with any classical mechanical system one associates
its NC version [10, 11, 12, 13, 14].
Since NC geometry turns out to be useful tool for reformulation and investigation of some
problems in classical and quantum mechanics [10, 11, 12, 12, 14, 15, 16] as well as in QFT [17],
there are attempts to formulate it on a more fundamental level (see [18] for the recent review).
One of the barriers here is relativistic (Galilean) invariance. Except a couple of specific models,
compatibility of NC geometry with the symmetries remains an open problem. In 2+1 dimensions,
the Landau problem [7] and the Lukierski–Stichel–Zakrzewski higher derivative NC particle [8]
are compatible with the Galilean invariance. In four dimensions situation is less promising.
Similarly to the Snyder NC space [19], d = 4 NC particle turns out to be compatible with
relativistic invariance realized only as a dynamical symmetry [10, 20, 21].
In the present work we avoid the problem since noncommutativity is associated with the
inner space, being not only compatible but responsible for appearance the spin representation
of SO(3) group.
In this work we concentrate mainly on algebraic construction of the inner spin space, the latter
presented in Section 2. Its dynamical realizations are only sketched, technical details will be
presented elsewhere. As the dynamical realizations we discuss two different D = 3 + 1 spinning
particles in Section 3. The first model implies Pauli equation upon the canonical quantization.
The second model produces nonrelativistic limit of the Dirac equation thus leading to correct
value for the electron spin magnetic moment.
2 Noncommutative sphere algebra
Consider canonical pairs vi, πj , i, j = 1, 2, 3 with the Poisson bracket algebra being
{vi, πj} = δij .
To arrive at the desired SO(3) algebra, we restrict the initial system to lie on some d = 2
surface of the six dimensional phase space. It will be made in two steps. First we constrain the
coordinates to lie on d = 4 surface specified by
v2 = a2, vπ = 0, a = const. (2)
From Noncommutative Sphere to Nonrelativistic Spin 3
The constraints form a second class system, {v2−a2, vπ} = 2v2. So one takes them into account
by transition from the Poisson to Dirac bracket, { , }D1, the latter reads
{A,B}D1 = {A,B} − {A, vπ} 1
2v2
{
v2, B
}
+
{
A, v2
} 1
2v2
{vπ, B}. (3)
Here A, B are phase space functions. For the phase space coordinates it implies the algebra1
{vi, vj}D1 = 0, {vi, πj}D1 = δij −
1
v2
vivj ,
{πi, πj}D1 = − 1
v2
(viπj − vjπi). (4)
Constraints are consistent with the Dirac algebra, that is {A, v2− a2}D1 = 0, {A, vπ}D1 = 0 for
any phase space function A(v, π). So one can resolve the constraints, keeping four independent
coordinates and the corresponding algebra.
We introduce coordinates that turn out to be convenient for canonical quantization of the
system. Consider the quantities
Ji ≡ εijkvjπk, π̃1 = π1, π̃2 = π2, s = viπi, (5)
where εijk is three dimensional Levi-Civita tensor, ε123 = 1, εijk = ε[ijk]. The quantities Ji
obey SO(3) angular momentum algebra with respect to both Poisson and Dirac brackets. Equa-
tions (5) can be inverted
π1 = π̃1, π2 = π̃2, π3 = −J1π̃1 + J2π̃2
J3
, (6)
vi =
1
π2
(εijkπjJk + sπi),
where πi in the last equality are given by (6). Hence Ji, π̃1, π̃2, s can be used as coordinates
of the six dimensional space instead of vi, πi. Equations of the surface (2) in these coordinates
acquire the form J2 = a2π̃2, s = 0.
One can compute the Dirac bracket (3) for the new coordinates2. To keep the manifest SO(3)
covariance of the formalism, the equation (6) prompts to introduce π̃3 ≡ −J1π̃1+J2π̃2
J3
(or, equiva-
lently, Jπ̃ = 0). Then the Dirac brackets of Ji, π̃i are
{Ji, Jj}D1 = εijkJk, (7)
{π̃i, π̃j}D1 = − 1
a2
εijkJk, {Ji, π̃j}D1 = εijkπ̃k, (8)
while the Dirac bracket of s with any other coordinate vanishes. Since s = 0 on the constraint
surface, it can be omitted from consideration. In resume, the surface (2) is now described by
coordinates Ji, π̃i that are constrained by
Jπ̃ = 0, J2 = a2π̃2, (9)
and obey the algebra (7), (8). When a2 = 1, it is just the Lorentz group algebra written in
terms of the rotation J and the Lorentz boost π̃ generators. Notice also that Dirac bracket of
the constraints (9) with any phase space quantity vanishes.
1Equation (4) is analogous to the Snyder noncommutative algebra. I am grateful to the referee for this
observation.
2Equivalently, one can start with Poisson bracket of the new variables and construct the Dirac bracket corre-
sponding the constraints J2 = a2π̃2, s = 0.
4 A.A. Deriglazov
One has already the desired algebra (7), but in the system with four independent variables.
To improve this, we impose two more second class constraints and construct the corresponding
Dirac bracket. To guarantee that the bracket does not modify its form for Ji, the equation (7),
one of constraints must give vanishing D1-bracket with Ji. The only possibility is to take
(a function of) Casimir operator of SO(3) algebra. As another constraint, one takes any phase
space function that forms second class system with the Casimir operator. The ambiguity in
choosing the second constraint suggests that corresponding dynamical realization will be locally
invariant theory, see below. Let us take, for example, the constraints
J2 − 3~2
4
= 0, ε3jkπ̃jJk = 0 (that is v3 = 0),
Using their bracket, {J2 − 3~2
4 , εijkπ̃jJk}D1 = −2π̃3J
2, one obtains D2-Dirac bracket
{A,B}D2 = {A,B}D1 −
{
A, J2
}
D1
1
2π̃3J2
{ε3jkπ̃jJk, B}D1
+ {A, ε3jkπ̃jJk}D1
1
2π̃3J2
{
J2, B
}
D1
.
In the result we have d = 2 surface determined by the constraints
Jπ̃ = 0, π̃2 =
3~2
4a2
, π̃1J2 − π̃2J1 = 0, (10)
J2 =
3~2
4
. (11)
Equations (10) can be used to exclude all π̃i. Then one deal with the remaining variables Ji
obeying SO(3) algebra (7) and subject the constraint (11).
Finite dimensional irreducible representations of the angular momentum algebra are num-
bered by the spin s. The condition (11) fixes the spin s = 1
2 . So, J are quantized by
Ji −→ Ĵi =
~
2
σi,
where σi states for the Pauli matrices. They act on space of two dimensional spinors Ψα, α = 1, 2.
As a consequence of the σ-matrix commutator algebra, [σi, σj ] = 2iεijkσk, the operators Ĵi obey
the quantum counterpart of the classical algebra (7)
[Ĵi, Ĵj ] = i~εijkĴk,
as well as the constraint (11).
3 Dynamical realizations
Here we suggest two different spinning particle models that realize the algebraic construction
described above.
Nonrelativistic spinning particle implying the Pauli equation. Let us start with
discussion of spinning part of a Lagrangian. The constraints (2) as well as the second constraint
from equation (10) prompt to write
Lspin =
1
2g
v̇2 + g
b2
2a2
+
1
φ
(
v2 − a2
)
, b2 =
3~2
4
. (12)
From Noncommutative Sphere to Nonrelativistic Spin 5
Here g(t), φ(t) are auxiliary degrees of freedom. The corresponding Hamiltonian is given by
H =
g
2
(
π2 − b2
a2
)
− 1
φ
(
v2 − a2
)
+ λgπg + λφπφ.
where πg, πφ are conjugate momenta for g, φ and λ represent lagrangian multipliers for the
primary constraints πg = 0, πφ = 0.
The variables g, φ are subject to second class constraints πφ = 0, gb2
a2 + 2a2
φ = 0 and to
the primary first class constraint πg = 0. The latter is associated with local symmetry of the
action (12) (with a parameter being an arbitrary function α(t))
δvi = αv̇i, δg = (αg)., δφ = αφ̇− α̇φ. (13)
Imposing the gauge g = 1, the variables g, φ, πg, πφ can be omitted from consideration.
Besides one obtains the desirable constraints
v2 = a2, vπ = 0, (14)
π2 − 3~2
4a2
= 0. (15)
The pair (14) is of second class, while (15) represents the first class constraint3.
Consider now the spinning particle action
S =
∫
dt
(
m
2
ẋ2 +
e
c
Aiẋ
i − eA0 +
1
2g
(v̇i −
e
mc
εijkvjBk)2 + g
b2
2a2
+
1
φ
(
v2 − a2
))
.
Here xi, i = 1, 2, 3, states for spatial coordinates of the particle, and B = ∇ × A. Second
and third terms represent minimal interaction with the vector potential A0, Ai of an external
electromagnetic field, while the fourth term contains interaction of spin with a magnetic field.
At the end, it produces the Pauli term in quantum mechanical Hamiltonian.
As it has been discussed above, constraints presented in the model allows one to describe it in
terms of the variables xi, its conjugate momenta pi, and the spin vector Ji = εijkvjπk (let us point
out that in contrast to vi, πi, the spin vector Ji turns out to be gauge invariant quantity with
respect to the local symmetry (13)). One notices that the action leads to reasonable classical
theory. In the variables x, J , classical dynamics is governed by the Lagrangian equations
mẍi = eEi +
e
c
εijkẋjBk −
e
mc
Jk∂iBk, (16)
J̇i =
e
mc
εijkJjBk. (17)
It has been denoted E = −1
c
∂A
∂t −∇A0. Since J2 ≈ ~2, the J-term disappears from equation (16)
in the classical limit ~ → 0. Then equation (16) reproduces the classical motion in an external
electromagnetic field. Notice also that in absence of interaction, the spinning particle does not
experience an undesirable self acceleration. Equation (17) describes the classical spin precession
in an external magnetic field.
In the Hamiltonian formulation, taking into account the presented constraints, one obtains
the only non vanishing Dirac brackets {xi, pj} = δij , {Ji, Jj} = εijkJk, and the Hamiltonian
H =
1
2m
(
pi −
e
c
Ai
)2
− e
mc
JiBi + eA0.
3More exactly, first class constraint is given by the combination π2 − 3~2
4a2 + 3~2
4a4
(
v2 − a2
)
= 0.
6 A.A. Deriglazov
Hence canonical quantization of the model implies the Pauli equation
i~
∂Ψ
∂t
=
(
1
2m
(
p̂− e
c
A
)2
+ eA0 −
e~
2mc
σB
)
Ψ. (18)
Nonrelativistic spinning particle that produces quantum mechanical Hamiltonian
corresponding nonrelativistic limit of the Dirac equation. One remarkable property
of the Dirac equation minimally coupled to the vector potential is that it yields the correct
gyromagnetic ratio g = 2 for the electron spin magnetic moment [22]. Technically it happens
due to the fact that in nonrelativistic limit arises the Hamiltonian 1
2m(pσ)2 instead of 1
2m(p)2.
Then the minimal substitution p→ p− e
cA leads automatically to the Pauli term with correct
value of the spin magnetic moment4 (see the last term in equation (18)). It is interesting to look
for a spinning particle action that would lead to the nonrelativistic limit of the Dirac equation.
We propose the action
S =
∫
dt
[
3
2
(
~
√
m
2v2
εijkẋiv̇jvk
) 2
3
+ φ
(
v2 − a2
)]
.
The conventional degree, 2
3 , leads at the end to the desired Hamiltonian. The factor ~
√
m implies
correct dimension of the action. In the Hamiltonian formulation one obtains the constraints
vπ = 0, v2 − a2 = 0, (19)
vp = 0. (20)
The pair (19) is of second class, while (20) represents the first class constraint associated with
the local symmetry
δxi = αvi.
Let us take the gauge5 J2 = 3~2
4 for the constraint (20). On the constraint surface the classical
Hamiltonian is given by
H = − 2
m~2
(pJ)2.
Canonical quantization p → p̂ = −i~∇, J → Ĵ = ~
2σ leads to nonrelativistic limit of the Dirac
equation
H =
1
2m
(p̂σ)2.
It implies correct value of the spin magnetic moment after the minimal substitution p̂→ p̂− e
cA.
Acknowledgments
The work has been supported by the Brazilian foundations CNPq (Conselho Nacional de De-
senvolvimento Cient́ıfico e Tecnológico - Brasil) and FAPEMIG.
4Anomalous magnetic moment is discussed in the quantum mechanics framework in [23].
5It is admissible gauge for the motions with pπ 6= 0.
From Noncommutative Sphere to Nonrelativistic Spin 7
References
[1] Berezin F.A., Marinov M.S., Particle spin dynamics as the Grassmann variant of classical mechanics, Ann.
Physics 104 (1977), 336–362.
[2] Gitman D.M., Path integrals and pseudoclassical description for spinning particles in arbitrary dimensions,
Nuclear Phys. B 488 (1997), 490–512, hep-th/9608180.
[3] Deriglazov A.A., Gitman D.M., Classical description of spinning degrees of freedom of relativistic particles
by means of commuting spinors, Modern Phys. Lett. A 14 (1999), 709–720, hep-th/9811229.
[4] Frenkel J., Die Elektrodynamik des rotierenden Elektrons, Z. f. Physik 37 (1926), 243–262.
Bargmann V., Michel L., Telegdi V.L., Precession of the polarization of particles moving in a homogeneous
electromagnetic field, Phys. Rev. Lett. 2 (1959), 435–436.
Barut A.O., Electrodynamics and classical theory of fields and particles, MacMillan, New York, 1964.
Hanson A.J., Regge T., The relativistic spherical top, Ann. Physics 87 (1974), 498–566.
[5] Kuzenko S.M., Lyakhovich S.L., Segal A.Yu., A geometric model of the arbitrary spin massive particle,
Internat. J. Modern Phys. A 10 (1995), 1529–1552, hep-th/9403196.
Nersessian A., Ramos E., Massive spinning particles and the geometry of null curves, Phys. Lett. B 445
(1998), 123–128, hep-th/9807143.
Barreto M.N., Ferreira F.J.S., Zlatev S.I., Strictly canonical quantization of a massless spinning particle and
a quaternionic extension of pseudoclassical mechanics, hep-th/0510122.
Casalbuoni R., Gomis J., Kamimura K., Longhi G., Space-time vector supersymmetry and massive spinning
particle, J. High Energy Phys. 2008 (2008), no. 2, 094, 16 pages, arXiv:0801.2702.
Das S., Ghosh S., Relativistic spinning particle in a nonnommutative extended spacetime, Phys. Rev. D 80
(2009), 085009, 8 pages, arXiv:0907.0290.
[6] Seiberg N., Witten E., String theory and noncommutative geometry, J. High Energy Phys. 1999 (1999),
no. 9, 032, 93 pages, hep-th/9908142.
[7] Landau L.D., Lifshitz E.M., Quantum mechanics. Non-relativistic theory, Vol. 3, 3rd ed., Pergamon Press,
Oxford – New York – Toronto, 1991, 1991.
[8] Lukierski J., Stichel P.C., Zakrzewski W.J., Galilean-invariant (2+1)-dimensional models with a Chern–
Simons-like term and D = 2 noncommutative geometry, Ann. Physics 260 (1997), 224–249, hep-th/9612017.
[9] Dunne G., Jackiw R., “Peireles substitution” and Chern–Simons quantum mechanics, Nuclear Phys. B Proc.
Suppl. 33C (1993), 114–118, hep-th/9204057.
Deriglazov A.A., Neves C., Oliveira W., Open string with a background B-field as the first order mechanics
and noncommutativity, hep-th/0110183.
Deriglazov A.A., Neves C., Oliveira W., Abreu E.M.C., Wotzasek C., Filgueiras C., Open string with
a background B field as the first order mechanics, noncommutativity, and soldering formalism, Phys. Rev. D
76 (2007), 064007, 8 pages, arXiv:0707.1799.
[10] Deriglazov A.A., Noncommutative version of an arbitrary nondegenerated mechanics, hep-th/0208072.
Deriglazov A.A., Noncommutative relativistic particle on the electromagnetic background, Phys. Lett. B
555 (2003), 83–88, hep-th/0208201.
[11] Bemfica F.S., Girotti H.O., Noncommutative quantum mechanics as a gauge theory, Phys. Rev. D 79 (2009),
125024, 8 pages, arXiv:0906.2161.
Bemfica F.S., Girotti H.O., Noncommutative quantum mechanics: uniqueness of the functional description,
Phys. Rev. D 78 (2008), 125009, 6 pages, arXiv:0810.1224.
[12] Baldiotti M.C., Gazeau J.-P., Gitman D.M., Semiclassical and quantum description of motion on noncom-
mutative plane, Phys. Lett. A 373 (2009), 3937–3943, arXiv:0906.0388.
[13] Gomes M., Kupriyanov V.G., Position-dependent noncommutativity in quantum mechanics, Phys. Rev. D
79 (2009), 125011, 6 pages, arXiv:0902.3252.
Gomes M., Kupriyanov V.G., da Silva A.J., Dynamical noncommutativity, arXiv:0908.2963.
[14] Amorim R., Tensor operators in noncommutative quantum mechanics, Phys. Rev. Lett. 101 (2008), 081602,
4 pages, arXiv:0804.4400.
Amorim R., Tensor coordinates in noncommutative mechanics, J. Math. Phys. 50 (2009), 052103, 7 pages,
arXiv:0804.4405.
[15] Bellucci S., Nersessian A., Phases in noncommutative quantum mechanics on (pseudo)sphere, Phys. Lett. B
542 (2002), 295–300, hep-th/0205024.
Deriglazov A.A., Quantum mechanics on noncommutative plane and sphere from constrained systems, Phys.
Lett. B 530 (2002), 235–243, hep-th/0201034.
Daszkiewicz M., Lukierski J., Woronowicz M., κ-deformed statistics and classical four-momentum addition
law, Modern Phys. Lett. A 23 (2008), 653–665, hep-th/0703200.
http://dx.doi.org/10.1016/0003-4916(77)90335-9
http://dx.doi.org/10.1016/0003-4916(77)90335-9
http://dx.doi.org/10.1016/S0550-3213(96)00691-8
http://arxiv.org/abs/hep-th/9608180
http://dx.doi.org/10.1142/S0217732399000754
http://arxiv.org/abs/hep-th/9811229
http://dx.doi.org/10.1007/BF01397099
http://dx.doi.org/10.1103/PhysRevLett.2.435
http://dx.doi.org/10.1016/0003-4916(74)90046-3
http://dx.doi.org/10.1142/S0217751X95000735
http://arxiv.org/abs/hep-th/9403196
http://dx.doi.org/10.1016/S0370-2693(98)01408-7
http://arxiv.org/abs/hep-th/9807143
http://arxiv.org/abs/hep-th/0510122
http://dx.doi.org/10.1088/1126-6708/2008/02/094
http://arxiv.org/abs/0801.2702
http://dx.doi.org/10.1103/PhysRevD.80.085009
http://arxiv.org/abs/0907.0290
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://arxiv.org/abs/hep-th/9908142
http://dx.doi.org/10.1006/aphy.1997.5729
http://arxiv.org/abs/hep-th/9612017
http://dx.doi.org/10.1016/0920-5632(93)90376-H
http://dx.doi.org/10.1016/0920-5632(93)90376-H
http://arxiv.org/abs/hep-th/9204057
http://arxiv.org/abs/hep-th/0110183
http://dx.doi.org/10.1103/PhysRevD.76.064007
http://arxiv.org/abs/0707.1799
http://arxiv.org/abs/hep-th/0208072
http://dx.doi.org/10.1016/S0370-2693(03)00061-3
http://arxiv.org/abs/hep-th/0208201
http://dx.doi.org/10.1103/PhysRevD.79.125024
http://arxiv.org/abs/0906.2161
http://dx.doi.org/10.1103/PhysRevD.78.125009
http://arxiv.org/abs/0810.1224
http://dx.doi.org/10.1016/j.physleta.2009.08.059
http://arxiv.org/abs/0906.0388
http://dx.doi.org/10.1103/PhysRevD.79.125011
http://arxiv.org/abs/0902.3252
http://arxiv.org/abs/0908.2963
http://dx.doi.org/10.1103/PhysRevLett.101.081602
http://arxiv.org/abs/0804.4400
http://dx.doi.org/10.1063/1.3119005
http://arxiv.org/abs/0804.4405
http://dx.doi.org/10.1016/S0370-2693(02)02379-1
http://arxiv.org/abs/hep-th/0205024
http://dx.doi.org/10.1016/S0370-2693(02)01262-5
http://dx.doi.org/10.1016/S0370-2693(02)01262-5
http://arxiv.org/abs/hep-th/0201034
http://dx.doi.org/10.1142/S021773230802673X
http://arxiv.org/abs/hep-th/0703200
8 A.A. Deriglazov
Li K., Dulat S., The Aharonov–Bohm effect in noncommutative quantum mechanics, Eur. Phys. J. C 46
(2006), 825–828, hep-th/0508193.
Dulat S., Li K., Commutator anomaly in noncommutative quantum mechanics, Modern Phys. Lett. A 21
(2006), 2971–2976, hep-th/0508060.
Adorno T.C.M., Baldiotti C., Chaichian M., Gitman D.M., Tureanu A., Dirac equation in noncommutative
space for hydrogen atom, Phys. Lett. B 682 (2009), 235–239, arXiv:0904.2836.
Gitman D.M., Kupriyanov V.G., Path integral representations in noncommutative quantum mechanics and
noncommutative version of Berezin–Marinov action, Eur. Phys. J. C 54 (2008), 325–332, arXiv:0707.0310.
Miao Y.-G., Müller-Kirsten H.J.W., Park D.K., Chiral bosons in noncommutative spacetime, J. High Energy
Phys. 2003 (2003), no. 8, 038, 21 pages, hep-th/0306034.
Acatrinei C.S., A simple signal of noncommutative space, Modern Phys. Lett. A 20 (2005), 1437–1441,
hep-th/0311134.
Bérard A., Mohrbach H., Monopole and Berry phase in momentum space in noncommutative quantum
mechanics, Phys. Rev. D 69 (2004), 127701, 4 pages, hep-th/0310167.
Lukierski J., Stichel P.C., Zakrzewski W.J., Noncommutative planar particle dynamics with gauge interac-
tions, Ann. Physics 306 (2003), 78–95, hep-th/0207149.
Romero J.M., Santiago J.A., Cosmological constant and noncommutativity: a Newtonian point of view,
Modern Phys. Lett. A 20 (2005), 781–790, hep-th/0310266.
[16] Aloisio R., Galante A., Grillo A., Luzio E., Méndez F., A note on DSR-like approach to space-time, Phys.
Lett. B 610 (2005), 101–106, gr-qc/0501079.
Aloisio R., Galante A., Grillo A.F., Liberati S., Luzio E., Méndez F., Deformed special relativity as an
effective theory of measurements on quantum gravitational backgrounds, Phys. Rev. D 73 (2006), 045020,
11 pages, gr-qc/0511031.
Aloisio R., Galante A., Grillo A.F., Liberati S., Luzio E., Méndez F., Modified special relativity on
a fluctuating spacetime, Phys. Rev. D 74 (2006), 085017, 7 pages, gr-qc/0607024.
Deriglazov A.A., Doubly special relativity in position space starting from the conformal group, Phys. Lett. B
603 (2004), 124–129, hep-th/0409232.
Deriglazov A.A., Interpretation of Lorentz boosts in conformally deformed special relativity theory,
hep-th/0510015.
Mignemi S., Doubly special relativity and translation invariance, Phys. Lett. B 672 (2009), 186–189,
arXiv:0808.1628.
[17] Girotti H.O., Gomes M., Rivelles V.O., da Silva A.J., A consistent noncommutative field theory: the Wess–
Zumino model, Nuclear Phys. B 587 (2000), 299–310, hep-th/0005272.
Girotti H.O., Noncommutative quantum field theories, Amer. J. Phys. 72 (2004), 608–612, hep-th/0301237.
Amorim R., Dynamical symmetries in noncommutative theories, Phys. Rev. D 78 (2008), 105003, 7 pages,
arXiv:0808.3062.
Amorim R., Fermions and noncommutative theories, J. Math. Phys. 50 (2009), 022303, 7 pages,
arXiv:0808.3903.
Daszkiewicz M., Lukierski J., Woronowicz M., Towards quantum noncommutative κ-deformed field theory,
Phys. Rev. D 77 (2008), 105007, 10 pages, arXiv:0708.1561.
Gonera C., Kosiński P., Maślanka P., Giller S., Global symmetries of noncommutative space-time, Phys.
Rev. D 72 (2005), 067702, 3 pages, hep-th/0507054.
Amorim R., Abreu E.M.C., Quantum complex scalar fields and noncommutativity, Phys. Rev. D, to appear,
arXiv:0909.0465.
[18] Szabo R.J., Quantum gravity, field theory and signatures of noncommutative spacetime, Gen. Relativity
Gravitation 42 (2010), 1–29, arXiv:0906.2913.
Banerjee R., Chakraborty B., Ghosh S., Mukherjee P., Samanta S., Topics in noncommutative geometry
inspired physics, Found. Phys. 39 (2009), 1297–1345, arXiv:0909.1000.
[19] Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947), 38–41.
[20] Deriglazov A.A., Poincaré covariant mechanics on noncommutative space, J. High Energy Phys. 2003 (2003),
no. 3, 021, 9 pages, hep-th/0211105.
[21] Gitman D.M., Kupriyanov V.G., Gauge invariance and classical dynamics of noncommutative particle theory,
arXiv:0910.1341.
[22] Bjorken J.D., Drell S.D., Relativistic quantum fields, McGraw-Hill Book Co., New York – Toronto – Lon-
don – Sydney, 1965.
[23] Belich H., Colatto L.P., Costa-Soares T., Helayël-Neto J.A., Orlando M.T.D., Magnetic moment generation
from non-minimal couplings in a scenario with Lorentz-symmetry violation, Eur. Phys. J. C 62 (2009),
425–432, arXiv:0806.1253.
http://dx.doi.org/10.1140/epjc/s2006-02538-2
http://arxiv.org/abs/hep-th/0508193
http://dx.doi.org/10.1142/S0217732306020585
http://arxiv.org/abs/hep-th/0508060
http://dx.doi.org/10.1016/j.physletb.2009.11.003
http://arxiv.org/abs/0904.2836
http://dx.doi.org/10.1140/epjc/s10052-007-0518-x
http://arxiv.org/abs/0707.0310
http://dx.doi.org/10.1088/1126-6708/2003/08/038
http://dx.doi.org/10.1088/1126-6708/2003/08/038
http://arxiv.org/abs/hep-th/0306034
http://dx.doi.org/10.1142/S0217732305017536
http://arxiv.org/abs/hep-th/0311134
http://dx.doi.org/10.1103/PhysRevD.69.127701
http://arxiv.org/abs/hep-th/0310167
http://dx.doi.org/10.1016/S0003-4916(03)00010-1
http://arxiv.org/abs/hep-th/0207149
http://dx.doi.org/10.1142/S0217732305016373
http://arxiv.org/abs/hep-th/0310266
http://dx.doi.org/10.1016/j.physletb.2005.01.090
http://dx.doi.org/10.1016/j.physletb.2005.01.090
http://arxiv.org/abs/gr-qc/0501079
http://dx.doi.org/10.1103/PhysRevD.73.045020
http://arxiv.org/abs/gr-qc/0511031
http://dx.doi.org/10.1103/PhysRevD.74.085017
http://arxiv.org/abs/gr-qc/0607024
http://dx.doi.org/10.1016/j.physletb.2004.10.024
http://arxiv.org/abs/hep-th/0409232
http://arxiv.org/abs/hep-th/0510015
http://dx.doi.org/10.1016/j.physletb.2009.01.023
http://arxiv.org/abs/0808.1628
http://dx.doi.org/10.1016/S0550-3213(00)00483-1
http://arxiv.org/abs/hep-th/0005272
http://dx.doi.org/10.1119/1.1624116
http://arxiv.org/abs/hep-th/0301237
http://dx.doi.org/10.1103/PhysRevD.78.105003
http://arxiv.org/abs/0808.3062
http://dx.doi.org/10.1063/1.3076899
http://arxiv.org/abs/0808.3903
http://dx.doi.org/10.1103/PhysRevD.77.105007
http://arxiv.org/abs/0708.1561
http://dx.doi.org/10.1103/PhysRevD.72.067702
http://dx.doi.org/10.1103/PhysRevD.72.067702
http://arxiv.org/abs/0507054
http://arxiv.org/abs/0909.0465
http://dx.doi.org/10.1007/s10714-009-0897-4
http://dx.doi.org/10.1007/s10714-009-0897-4
http://arxiv.org/abs/0906.2913
http://dx.doi.org/10.1007/s10701-009-9349-y
http://arxiv.org/abs/0909.1000
http://dx.doi.org/10.1103/PhysRev.71.38
http://dx.doi.org/10.1088/1126-6708/2003/03/021
http://arxiv.org/abs/hep-th/0211105
http://arxiv.org/abs/0910.1341
http://dx.doi.org/10.1140/epjc/s10052-009-1017-z
http://arxiv.org/abs/0806.1253
1 Introduction
2 Noncommutative sphere algebra
3 Dynamical realizations
References
|