Solitary Waves in Massive Nonlinear SN-Sigma Models
The solitary waves of massive (1+1)-dimensional nonlinear SN-sigma models are unveiled. It is shown that the solitary waves in these systems are in one-to-one correspondence with the separatrix trajectories in the repulsive N-dimensional Neumann mechanical problem. There are topological (heteroclini...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2010 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146155 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Solitary Waves in Massive Nonlinear SN-Sigma Models / A.A. Izquierdo, M.A. González León, M. de la Torre Mayado // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | The solitary waves of massive (1+1)-dimensional nonlinear SN-sigma models are unveiled. It is shown that the solitary waves in these systems are in one-to-one correspondence with the separatrix trajectories in the repulsive N-dimensional Neumann mechanical problem. There are topological (heteroclinic trajectories) and non-topological (homoclinic trajectories) kinks. The stability of some embedded sine-Gordon kinks is discussed by means of the direct estimation of the spectra of the second-order fluctuation operators around them, whereas the instability of other topological and non-topological kinks is established applying the Morse index theorem.
|
|---|---|
| ISSN: | 1815-0659 |