On Transitive Systems of Subspaces in a Hilbert Space
Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2006 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2006
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146166 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On Transitive Systems of Subspaces in a Hilbert Space / Y.P. Moskaleva, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146166 |
|---|---|
| record_format |
dspace |
| spelling |
Moskaleva, Y.P. Samoilenko, Y.S. 2019-02-07T20:02:45Z 2019-02-07T20:02:45Z 2006 On Transitive Systems of Subspaces in a Hilbert Space / Y.P. Moskaleva, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 12 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 47A62; 16G20 https://nasplib.isofts.kiev.ua/handle/123456789/146166 Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5. The authors are grateful to S.A. Kruglyak for useful remarks and suggestions. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications On Transitive Systems of Subspaces in a Hilbert Space Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On Transitive Systems of Subspaces in a Hilbert Space |
| spellingShingle |
On Transitive Systems of Subspaces in a Hilbert Space Moskaleva, Y.P. Samoilenko, Y.S. |
| title_short |
On Transitive Systems of Subspaces in a Hilbert Space |
| title_full |
On Transitive Systems of Subspaces in a Hilbert Space |
| title_fullStr |
On Transitive Systems of Subspaces in a Hilbert Space |
| title_full_unstemmed |
On Transitive Systems of Subspaces in a Hilbert Space |
| title_sort |
on transitive systems of subspaces in a hilbert space |
| author |
Moskaleva, Y.P. Samoilenko, Y.S. |
| author_facet |
Moskaleva, Y.P. Samoilenko, Y.S. |
| publishDate |
2006 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146166 |
| citation_txt |
On Transitive Systems of Subspaces in a Hilbert Space / Y.P. Moskaleva, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT moskalevayp ontransitivesystemsofsubspacesinahilbertspace AT samoilenkoys ontransitivesystemsofsubspacesinahilbertspace |
| first_indexed |
2025-11-28T17:33:22Z |
| last_indexed |
2025-11-28T17:33:22Z |
| _version_ |
1850854015988924416 |