On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles

For a class of *-algebras, where *-algebra AΓ,τ is generated by projections associated with vertices of graph Γ and depends on a parameter τ (0 < τ ≤ 1), we study the sets ΣΓ of values of τ such that the algebras AΓ,τ have nontrivial *-representations, by using the theory of spectra of graphs. In...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2006
Main Authors: Popova, N.D., Samoilenko, Y.S.
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146167
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles / N.D. Popova, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146167
record_format dspace
spelling Popova, N.D.
Samoilenko, Y.S.
2019-02-07T20:03:41Z
2019-02-07T20:03:41Z
2006
On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles / N.D. Popova, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 9 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 16G99; 20C08
https://nasplib.isofts.kiev.ua/handle/123456789/146167
For a class of *-algebras, where *-algebra AΓ,τ is generated by projections associated with vertices of graph Γ and depends on a parameter τ (0 < τ ≤ 1), we study the sets ΣΓ of values of τ such that the algebras AΓ,τ have nontrivial *-representations, by using the theory of spectra of graphs. In other words, we study such values of τ that the corresponding configurations of subspaces in a Hilbert space exist.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
spellingShingle On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
Popova, N.D.
Samoilenko, Y.S.
title_short On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
title_full On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
title_fullStr On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
title_full_unstemmed On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
title_sort on the existence of configurations of subspaces in a hilbert space with fixed angles
author Popova, N.D.
Samoilenko, Y.S.
author_facet Popova, N.D.
Samoilenko, Y.S.
publishDate 2006
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description For a class of *-algebras, where *-algebra AΓ,τ is generated by projections associated with vertices of graph Γ and depends on a parameter τ (0 < τ ≤ 1), we study the sets ΣΓ of values of τ such that the algebras AΓ,τ have nontrivial *-representations, by using the theory of spectra of graphs. In other words, we study such values of τ that the corresponding configurations of subspaces in a Hilbert space exist.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146167
citation_txt On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles / N.D. Popova, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT popovand ontheexistenceofconfigurationsofsubspacesinahilbertspacewithfixedangles
AT samoilenkoys ontheexistenceofconfigurationsofsubspacesinahilbertspacewithfixedangles
first_indexed 2025-11-24T02:39:08Z
last_indexed 2025-11-24T02:39:08Z
_version_ 1850840159435620352
fulltext Symmetry, Integrability and Geometry: Methods and Applications Vol. 2 (2006), Paper 055, 5 pages On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles Natasha D. POPOVA and Yurii S. SAMOǏLENKO Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka Str., Kyiv-4, 01601 Ukraine E-mail: popova n@yahoo.com, yurii sam@imath.kiev.ua Received December 01, 2005, in final form April 30, 2006; Published online May 29, 2006 Original article is available at http://www.emis.de/journals/SIGMA/2006/Paper055/ Abstract. For a class of ∗-algebras, where ∗-algebra AΓ,τ is generated by projections associated with vertices of graph Γ and depends on a parameter τ (0 < τ ≤ 1), we study the sets ΣΓ of values of τ such that the algebras AΓ,τ have nontrivial ∗-representations, by using the theory of spectra of graphs. In other words, we study such values of τ that the corresponding configurations of subspaces in a Hilbert space exist. Key words: representations of ∗-algebras; Temperley–Lieb algebras 2000 Mathematics Subject Classification: 16G99; 20C08 1 Introduction A number of papers is devoted to the study of n-tuples of subspaces in a Hilbert space. The in- terest to this problem arose in many respects due to its applications to problems of mathematical physics (see, e.g., [2] and the bibliography therein). Unitary description of n-tuples of subspaces is ∗-wild problem when n ≥ 3 (see [4]). In the present paper we study the configurations of subspaces Hi (i = 1, . . . , n) associated with the vertices of graph Γ, where an angle between any two of subspaces is fixed (see Section 3). It is convenient to consider such configurations of subspaces as ∗-representations of algebras generated by projections with relations of Temperley–Lieb type (see [3, 6, 9]). For tree Γ the set ΣΓ (of those values of an “angle” τ where the corresponding configurations exist) is described in Section 4. This result is obtained by using the theory of graph spectra (needed notions and results are given in Section 2). For graphs containing cycles the situation is more complicated (see Remark 2). 2 Necessary facts from theory of spectra of graphs We give some facts necessary for the exposition below, which can be found in [1]. Let Γ be a finite undirected graph without multiple edges and loops. The adjacency matrix of a graph Γ, with vertex set {1, . . . , n}, is n × n matrix AΓ = ‖ai,j‖n i,j=1 with ai,j = 1 if there is an edge between i and j, and ai,j = 0; otherwise ai,i = 0 ∀ i. The eigenvalues of AΓ and the spectrum of AΓ are also called the eigenvalues and the spectrum of a graph Γ, respectively. The eigenvalues of Γ are denoted by λ1, . . . , λn; they are real because AΓ is symmetric. We assume that r = λ1 ≥ λ2 ≥ · · · ≥ λn = q. The largest eigenvalue r = λ1 is called the index of a graph Γ. Proposition 1. 1. If a graph Γ contains at least one edge then 1 ≤ r ≤ n − 1, −r ≤ q ≤ −1, and r = −q if and only if a component of Γ with greatest index is a bipartite graph. 2. If Γ is a connected graph then 2 cos π n+1 ≤ r. mailto:popova_n@yahoo.com mailto:yurii_sam@imath.kiev.ua http://www.emis.de/journals/SIGMA/2006/Paper055/ 2 N.D. Popova and Yu.S. Samǒılenko An, n ≥ 1 t, t t, t t t, t t t t, . . . Dn, n ≥ 4 tH HHt��� t t, tH HHt��� t t t, tH HHt��� t t t t, . . . E6 t t t t t t E7 t t t t t t t E8 t t t t t t t t Figure 1. Dynkin diagrams An, Dn, E6, E7, E8. Remark 1. If Γ is a tree then r = −q, as the tree is a bipartite graph. We also need the following statement. Theorem 1 (J.H. Smith). Let Γ be a graph with index r. Then r ≤ 2 (r < 2) if and only if each component of Γ is a subgraph (proper subgraph) of one of the graphs depicted in Fig. 2 which all have an index equal to 2. Corollary 1 (For trees). Let Γ be a tree with index r. Then 1. r < 2 if and only if Γ is one of the following graphs: An, Dn, E6, E7, E8 (see Fig. 1). 2. r = 2 if and only if Γ is one of the following graphs: D̃n, Ẽ6, Ẽ7, Ẽ8 (see Fig. 2). 3 Configurations of subspaces in a Hilbert space with fixed angles between them Let H be a complex Hilbert space and let Hi,Hj ⊂ H be its closed subspaces. We say that an angle between Hi and Hj is fixed and equals to ϕi,j ∈ [0; π 2 ] if for the orthogonal projections PHi , PHj on these subspaces we have PHiPHjPHi = cos2(ϕi,j)PHi and PHjPHiPHj = cos2(ϕi,j)PHj . Having a finite undirected graph Γ without multiple edges and loops with the numbers on its edges, we define the conditions on the configuration of subspaces in a Hilbert space as follows. The subspaces correspond to the vertices of a graph and an angle between any two of them is given by the number τi,j standing on the respective edge. If vertices are not adjacent we assume that the corresponding subspaces are orthogonal. We consider the following questions: 1. For which values of the parameters τi,j the configuration associated with a graph Γ exists. 2. Give the description of all irreducible configurations (associated with a fixed graph Γ and an arrangement of numbers on its edges) up to a unitary transformation. On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles 3 Ẽ8 t t t t t t t t t Ẽ6 t t t t t t t Ẽ7 t t t t t t t t D̃n, n ≥ 4 t t t t t, t HHHt��� t tH HH t ��� t , t HHHt��� t t tH HH t ��� t , . . . Ãn, n ≥ 2 t t� �� T TT t , t t t t , t tB B B t��� t � � � tQ QQ , . . . Figure 2. Extended Dynkin diagrams Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8. It should be noted that the subspaces corresponding to vertices from different components of Γ are orthogonal, so we will consider only connected graphs. These problems can be reformulated in terms of finding ∗-representations of ∗-algebras as- sociated with Γ with the numbers τi,j on the edges. Let Γ be a finite, undirected, connected graph without multiple edges and loops, with Γ0 (|Γ0| = n) and Γ1 the sets of the vertices and the edges respectively. Let τ : Γ1 → (0, 1) be the arrangement of numbers on its edges. We enumerate the vertices of Γ by numbers 1, . . . , n in any way and denote τ(i, j) =: τi,j = τj,i. Definition 1. AΓ,τ is an ∗-algebra with 1 over C generated by projections p1, . . . , pn (p2 i = p∗i = pi, ∀ i) with relations pipjpi = τi,jpi and pjpipj = τi,jpj if (i, j) ∈ Γ1, and pipj = pjpi = 0 otherwise. Results on dimension of the algebra AΓ,τ (in dependence on a graph Γ) can be found in [7, 8]. Below we suppose that Γ is a tree. Then the ∗-algebra AΓ,τ is finite dimensional and, therefore, does not have infinite dimensional irreducible ∗-representations. 4 On the set of values of the parameters where AΓ,τ has ∗-representations Let Γ be a tree and A(Γ, τ) = ‖Ai,j‖n i,j=1 be the symmetric matrix with Ai,i = 1 ∀ i; Ai,j = √ τi,j if (i, j) ∈ Γ1, and Ai,j = 0 otherwise. Proposition 2. Let Γ be a tree. Nontrivial ∗-representations of an algebra AΓ,τ exist if and only if the matrix A(Γ, τ) is positive semidefinite. Irreducible nontrivial ∗-representation is unique up to the unitary equivalence and its dimension is equal to the rank (A(Γ, τ)). 4 N.D. Popova and Yu.S. Samǒılenko The proof one can find in [8]. In the following we suppose that τ is constant (τi,j = τ ∀ (i, j) ∈ Γ1). The set of values of the parameter τ where AΓ,τ has nontrivial ∗-representations we will denote by ΣΓ. Theorem 2. Let Γ be a tree with index r. Then ΣΓ = ( 0; 1 r2 ] . (1) Proof. Indeed, A(Γ, τ) = I+ √ τBΓ where I is n×n unit matrix and BΓ is the adjacency matrix of the tree Γ. The matrix A(Γ, τ) is positive semidefinite if and only if its minimal eigenvalue is nonnegative, i.e., 1 + √ τq ≥ 0 (in the notations of Section 2) which is equivalent to τ ≤ 1 q2 . For trees we know that q = −r (see Remark 1), so the theorem is proved. � Example 1. Let us find the sets ΣΓ where graphs Γ are Dynkin diagrams. ΣAn = ( 0; 1 4 cos2 π n+1 ] , ΣDn = ( 0; 1 4 cos2 π 2(n−1) ] , ΣE6 = ( 0; 1 4 cos2 π 12 ] , ΣE7 = ( 0; 1 4 cos2 π 18 ] , ΣE8 = ( 0; 1 4 cos2 π 30 ] . Values of index of Dynkin diagrams can be found in [1]. Now we give some properties of ΣΓ (Γ is a tree) that immediately follow from Proposition 1 and Theorem 2. Proposition 3. Let Γ be a tree with n vertices. Then 1) ( 0; 1 (n− 1)2 ] ⊆ ΣΓ, 2) ΣΓ ⊆ ( 0; 1 4 cos2 π n+1 ] . Remark 2. For graph Γ that is not a tree situation is more complicated. For example, if the graph is a cycle with n vertices, i.e. Γ = Ãn−1, we know that ΣΓ = ΣAn−1 = ( 0; 1 4 cos2 π n ] (see [5]). But the index of Ãn−1 is r = 2 (see Theorem 1) and formula (1) does not hold. Moreover, it is known that all eigenvalues of Ãn−1 are of the form: λj = 2 cos 2π n j, j = 1, . . . , n (see [1]). Therefore, if n is even then no one eigenvalue λj of the graph Ãn−1 makes the formula ΣΓ = ( 0; 1 λ2 j ] true. Next proposition follows directly from Corollary 1 and Theorem 2. Proposition 4. Let Γ be a tree. Then 1. max ΣΓ > 1/4 if and only if Γ is one of the following graphs: An, Dn, E6, E7, E8. 2. max ΣΓ = 1/4 if and only if Γ is one of the following graphs: D̃n, Ẽ6, Ẽ7, Ẽ8. 3. For all other trees which are neither Dynkin diagrams nor extended Dynkin diagrams we have max ΣΓ < 1/4. On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles 5 [1] Cvetković D.M., Doob M., Sachs H., Spectra of graphs. Theory and applications, Berlin, VEB Deutscher Verlag der Wissenschaften, 1980. [2] Evans D.E., Kawahigashi Y., Quantum symmetries on operator algebras, Oxford University Press, 1998. [3] Fan C.K., Green R.M., On the affine Temperley–Lieb algebras, J. London Math. Soc. (2), 1999, V.60, N 2, 366–380. [4] Ostrovskyi V.L., Samǒılenko Yu.S., Introduction to the theory of representations of finitely presented ∗-al- gebras. I. Representations by bounded operators, Harwood Acad. Publ., 1999. [5] Popova N., On the algebra of Temperley–Lieb type, in Proceedings of Fourth International Conference “Symmetry in Nonlinear Mathematical Physics” (July 9–15, 2001, Kyiv), Editors A.G. Nikitin, V.M. Boyko and R.O. Popovych, Proceedings of Institute of Mathematics, Kyiv, 2002, V.43, Part 2, 486–489. [6] Temperley H.N.V., Lieb E.H., Relations between “percolations” and “colouring” problems and other graph theoretical problems associated with regular planar lattices: some exact results for the percolation problem, Proc. Roy. Soc. London Ser. A, 1971, V.322, N 1549, 251–280. [7] Vlasenko M., On the growth of an algebra generated by a system of projections with fixed angles, Methods Funct. Anal. Topology, 2004, V.10, N 1, 98–104. [8] Vlasenko M., Popova N., On configurations of subspaces of Hilbert space with fixed angles between them, Ukrain. Mat. Zh., 2004, V.56, N 5, 606–615 (English transl.: Ukrainian Math. J., 2004, V.56, N 5, 730–740). [9] Wenzl H., On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada, 1987, V.9, N 1, 5–9. 1 Introduction 2 Necessary facts from theory of spectra of graphs 3 Configurations of subspaces in a Hilbert space with fixed angles between them 4 On the set of values of the parameters where A, has *-representations