Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation
We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2006 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146168 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146168 |
|---|---|
| record_format |
dspace |
| spelling |
Guha, P. Olver, P.J. 2019-02-07T20:04:28Z 2019-02-07T20:04:28Z 2006 Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53A07; 53B50 https://nasplib.isofts.kiev.ua/handle/123456789/146168 We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively. One of the authors (PG) would like to thank Professor Andy Hone for various information about the two component Camassa–Holm equation. PG is also grateful to Professor Valentin Ovsienko for various stimulating discussions. PG would like to thank Professor Dieter Mayer at TU Clausthal, where the part of work was done in a stimulating atmosphere. This work was partially supported by the DFG Research Group “Zeta functions and locally symmetric spaces” which is gratefully acknowledged. The work of the second author was supported in part by NSF Grant DMS 05–05293. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
| spellingShingle |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation Guha, P. Olver, P.J. |
| title_short |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
| title_full |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
| title_fullStr |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
| title_full_unstemmed |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
| title_sort |
geodesic flow and two (super) component analog of the camassa-holm equation |
| author |
Guha, P. Olver, P.J. |
| author_facet |
Guha, P. Olver, P.J. |
| publishDate |
2006 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146168 |
| citation_txt |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ. |
| work_keys_str_mv |
AT guhap geodesicflowandtwosupercomponentanalogofthecamassaholmequation AT olverpj geodesicflowandtwosupercomponentanalogofthecamassaholmequation |
| first_indexed |
2025-12-07T13:24:36Z |
| last_indexed |
2025-12-07T13:24:36Z |
| _version_ |
1850856047903768576 |