On the Generalized Maxwell-Bloch Equations

A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2006
Автор: Saksida, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146179
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146179
record_format dspace
spelling Saksida, P.
2019-02-07T20:26:30Z
2019-02-07T20:26:30Z
2006
On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37K05; 35Q60; 37K30; 35Q58; 53D20
https://nasplib.isofts.kiev.ua/handle/123456789/146179
A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member corresponding to SU(2). The Hamiltonian structure is then used in the construction of a new family of symmetries and the associated conserved quantities of the Maxwell-Bloch equations.
I would like to thank professors Pavel Winternitz, Gregor Kovacic, and Jirı Patera for interesting and stimulating discussions. The research for this paper was supported in part by the research programme Analysis and Geometry P1-0291, Republic of Slovenia. A part of the research was done at the Centre de Recherches Mathematiques, Montreal, Canada. The hospitality of CRM and especially of professor Jirı Patera is gratefully acknowledged.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the Generalized Maxwell-Bloch Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Generalized Maxwell-Bloch Equations
spellingShingle On the Generalized Maxwell-Bloch Equations
Saksida, P.
title_short On the Generalized Maxwell-Bloch Equations
title_full On the Generalized Maxwell-Bloch Equations
title_fullStr On the Generalized Maxwell-Bloch Equations
title_full_unstemmed On the Generalized Maxwell-Bloch Equations
title_sort on the generalized maxwell-bloch equations
author Saksida, P.
author_facet Saksida, P.
publishDate 2006
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member corresponding to SU(2). The Hamiltonian structure is then used in the construction of a new family of symmetries and the associated conserved quantities of the Maxwell-Bloch equations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146179
citation_txt On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT saksidap onthegeneralizedmaxwellblochequations
first_indexed 2025-12-07T15:14:12Z
last_indexed 2025-12-07T15:14:12Z
_version_ 1850862943491588096