On the Generalized Maxwell-Bloch Equations
A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2006 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146179 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146179 |
|---|---|
| record_format |
dspace |
| spelling |
Saksida, P. 2019-02-07T20:26:30Z 2019-02-07T20:26:30Z 2006 On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K05; 35Q60; 37K30; 35Q58; 53D20 https://nasplib.isofts.kiev.ua/handle/123456789/146179 A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member corresponding to SU(2). The Hamiltonian structure is then used in the construction of a new family of symmetries and the associated conserved quantities of the Maxwell-Bloch equations. I would like to thank professors Pavel Winternitz, Gregor Kovacic, and Jirı Patera for interesting and stimulating discussions. The research for this paper was supported in part by the research programme Analysis and Geometry P1-0291, Republic of Slovenia. A part of the research was done at the Centre de Recherches Mathematiques, Montreal, Canada. The hospitality of CRM and especially of professor Jirı Patera is gratefully acknowledged. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications On the Generalized Maxwell-Bloch Equations Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the Generalized Maxwell-Bloch Equations |
| spellingShingle |
On the Generalized Maxwell-Bloch Equations Saksida, P. |
| title_short |
On the Generalized Maxwell-Bloch Equations |
| title_full |
On the Generalized Maxwell-Bloch Equations |
| title_fullStr |
On the Generalized Maxwell-Bloch Equations |
| title_full_unstemmed |
On the Generalized Maxwell-Bloch Equations |
| title_sort |
on the generalized maxwell-bloch equations |
| author |
Saksida, P. |
| author_facet |
Saksida, P. |
| publishDate |
2006 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member corresponding to SU(2). The Hamiltonian structure is then used in the construction of a new family of symmetries and the associated conserved quantities of the Maxwell-Bloch equations.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146179 |
| citation_txt |
On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ. |
| work_keys_str_mv |
AT saksidap onthegeneralizedmaxwellblochequations |
| first_indexed |
2025-12-07T15:14:12Z |
| last_indexed |
2025-12-07T15:14:12Z |
| _version_ |
1850862943491588096 |