Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras

In this paper we introduce a basic representation for the confluent Cherednik algebras HV, HIII, HD7III and HD8III defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual q-Hahn, Al-Salam{Chihara, continuous big...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2014
1. Verfasser: Mazzocco, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146185
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras / M. Mazzoco // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146185
record_format dspace
spelling Mazzocco, M.
2019-02-08T10:44:15Z
2019-02-08T10:44:15Z
2014
Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras / M. Mazzoco // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 7 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33D80; 33D52; 16T99
https://nasplib.isofts.kiev.ua/handle/123456789/146185
In this paper we introduce a basic representation for the confluent Cherednik algebras HV, HIII, HD7III and HD8III defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual q-Hahn, Al-Salam{Chihara, continuous big q-Hermite and continuous q-Hermite polynomials.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
spellingShingle Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
Mazzocco, M.
title_short Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
title_full Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
title_fullStr Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
title_full_unstemmed Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
title_sort non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
author Mazzocco, M.
author_facet Mazzocco, M.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper we introduce a basic representation for the confluent Cherednik algebras HV, HIII, HD7III and HD8III defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual q-Hahn, Al-Salam{Chihara, continuous big q-Hermite and continuous q-Hermite polynomials.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146185
citation_txt Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras / M. Mazzoco // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT mazzoccom nonsymmetricbasichypergeometricpolynomialsandrepresentationtheoryforconfluentcherednikalgebras
first_indexed 2025-12-07T21:15:50Z
last_indexed 2025-12-07T21:15:50Z
_version_ 1850885695454838784