Epsilon Systems on Geometric Crystals of Type An
We introduce an epsilon system on a geometric crystal of type An, which is a certain set of rational functions with some nice properties. We shall show that it is equipped with a product structure and that it is invariant under the action of tropical R maps.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2010 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2010
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146309 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Epsilon Systems on Geometric Crystals of Type An / T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146309 |
|---|---|
| record_format |
dspace |
| spelling |
Nakashima, T. 2019-02-08T20:17:48Z 2019-02-08T20:17:48Z 2010 Epsilon Systems on Geometric Crystals of Type An / T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 12 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 17B67; 22E65; 14M15 doi:10.3842/SIGMA.2010.023 https://nasplib.isofts.kiev.ua/handle/123456789/146309 We introduce an epsilon system on a geometric crystal of type An, which is a certain set of rational functions with some nice properties. We shall show that it is equipped with a product structure and that it is invariant under the action of tropical R maps. This paper is a contribution to the Proceedings of the Workshop “Geometric Aspects of Discrete and UltraDiscrete Integrable Systems” (March 30 – April 3, 2009, University of Glasgow, UK). The full collection is available at http://www.emis.de/journals/SIGMA/GADUDIS2009.html. The author thanks the organizers of the conference “Geometric Aspects of Discrete and UltraDiscrete Integrable Systems” for their kind hospitality. He is supported in part by JSPS Grantsin-Aid for Scientific Research #19540050. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Epsilon Systems on Geometric Crystals of Type An Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Epsilon Systems on Geometric Crystals of Type An |
| spellingShingle |
Epsilon Systems on Geometric Crystals of Type An Nakashima, T. |
| title_short |
Epsilon Systems on Geometric Crystals of Type An |
| title_full |
Epsilon Systems on Geometric Crystals of Type An |
| title_fullStr |
Epsilon Systems on Geometric Crystals of Type An |
| title_full_unstemmed |
Epsilon Systems on Geometric Crystals of Type An |
| title_sort |
epsilon systems on geometric crystals of type an |
| author |
Nakashima, T. |
| author_facet |
Nakashima, T. |
| publishDate |
2010 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We introduce an epsilon system on a geometric crystal of type An, which is a certain set of rational functions with some nice properties. We shall show that it is equipped with a product structure and that it is invariant under the action of tropical R maps.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146309 |
| citation_txt |
Epsilon Systems on Geometric Crystals of Type An / T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT nakashimat epsilonsystemsongeometriccrystalsoftypean |
| first_indexed |
2025-12-07T16:24:56Z |
| last_indexed |
2025-12-07T16:24:56Z |
| _version_ |
1850867394205974528 |