One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model
This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ-deformed non-commutative 1 p2 model originally introduced by Gurau et al. [Comm. Math. Phys. 287 (2009), 275–290]. It is shown that breaking terms of the form used by Vilar et al. [J...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2010 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2010
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146311 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model / D.N. Blaschke, A. Rofner, R.I Sedmik // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146311 |
|---|---|
| record_format |
dspace |
| spelling |
Blaschke, D.N. Rofner, A. Sedmik, R.I. 2019-02-08T20:25:24Z 2019-02-08T20:25:24Z 2010 One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model / D.N. Blaschke, A. Rofner, R.I Sedmik // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 26 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81T13; 81T15; 81T75 doi:10.3842/SIGMA.2010.037 https://nasplib.isofts.kiev.ua/handle/123456789/146311 This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ-deformed non-commutative 1 p2 model originally introduced by Gurau et al. [Comm. Math. Phys. 287 (2009), 275–290]. It is shown that breaking terms of the form used by Vilar et al. [J. Phys. A: Math. Theor. 43 (2010), 135401, 13 pages] and ourselves [Eur. Phys. J. C: Part. Fields 62 (2009), 433–443] to localize the BRST covariant operator (D² θ² D²)⁻¹ lead to dif ficulties concerning renormalization. The reason is that this dimensionless operator is invariant with respect to any symmetry of the model, and can be inserted to arbitrary power. In the present article we discuss explicit one-loop calculations, and analyze the mechanism the mentioned problems originate from This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. The authors are indebted to M. Schweda and M. Wohlgenannt for valuable discussions. The work of D.N. Blaschke, A. Rofner and R.I.P. Sedmik was supported by the “Fonds zur F¨orderungder Wissenschaftlichen Forschung” (FWF) under contract P20507-N16. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model |
| spellingShingle |
One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model Blaschke, D.N. Rofner, A. Sedmik, R.I. |
| title_short |
One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model |
| title_full |
One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model |
| title_fullStr |
One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model |
| title_full_unstemmed |
One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model |
| title_sort |
one-loop calculations and detailed analysis of the localized non-commutative p⁻² u(1) gauge model |
| author |
Blaschke, D.N. Rofner, A. Sedmik, R.I. |
| author_facet |
Blaschke, D.N. Rofner, A. Sedmik, R.I. |
| publishDate |
2010 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ-deformed non-commutative 1 p2 model originally introduced by Gurau et al. [Comm. Math. Phys. 287 (2009), 275–290]. It is shown that breaking
terms of the form used by Vilar et al. [J. Phys. A: Math. Theor. 43 (2010), 135401, 13 pages] and ourselves [Eur. Phys. J. C: Part. Fields 62 (2009), 433–443] to localize the BRST covariant operator (D² θ² D²)⁻¹ lead to dif ficulties concerning renormalization. The reason is that this dimensionless operator is invariant with respect to any symmetry of the model, and can be inserted to arbitrary power. In the present article we discuss explicit one-loop calculations, and analyze the mechanism the mentioned problems originate from
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146311 |
| citation_txt |
One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p⁻² U(1) Gauge Model / D.N. Blaschke, A. Rofner, R.I Sedmik // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 26 назв. — англ. |
| work_keys_str_mv |
AT blaschkedn oneloopcalculationsanddetailedanalysisofthelocalizednoncommutativep2u1gaugemodel AT rofnera oneloopcalculationsanddetailedanalysisofthelocalizednoncommutativep2u1gaugemodel AT sedmikri oneloopcalculationsanddetailedanalysisofthelocalizednoncommutativep2u1gaugemodel |
| first_indexed |
2025-12-07T20:29:04Z |
| last_indexed |
2025-12-07T20:29:04Z |
| _version_ |
1850882753558478848 |