The Noncommutative Ward Metric

We analyze the moduli-space metric in the static non-Abelian charge-two sector of the Moyal-deformed CP1 sigma model in 1+2 dimensions. After carefully reviewing the commutative results of Ward and Ruback, the noncommutative Kähler potential is expanded in powers of dimensionless moduli. In two spec...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2010
Main Authors: Lechtenfeld, O., Maceda, M.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146312
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The Noncommutative Ward Metric / O. Lechtenfeld, M. Maceda // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146312
record_format dspace
spelling Lechtenfeld, O.
Maceda, M.
2019-02-08T20:26:29Z
2019-02-08T20:26:29Z
2010
The Noncommutative Ward Metric / O. Lechtenfeld, M. Maceda // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 18 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 46L55; 81R60; 81T75
DOI:10.3842/SIGMA.2010.045
https://nasplib.isofts.kiev.ua/handle/123456789/146312
We analyze the moduli-space metric in the static non-Abelian charge-two sector of the Moyal-deformed CP1 sigma model in 1+2 dimensions. After carefully reviewing the commutative results of Ward and Ruback, the noncommutative Kähler potential is expanded in powers of dimensionless moduli. In two special cases we sum the perturbative series to analytic expressions. For any nonzero value of the noncommutativity parameter, the logarithmic singularity of the commutative metric is expelled from the origin of the moduli space and possibly altogether.
This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. The authors acknowledge financial support from DAAD, Kennzif fer A/08/03929. O.L. is grateful for discussions with N. Dragon, H. Grosse, W. Nahm, C. Nash and E. Schrohe. In particular he thanks A. Fischer for discovering the relation to spheroidal wave functions and M. Rubey for support with his program FriCAS [18].
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Noncommutative Ward Metric
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Noncommutative Ward Metric
spellingShingle The Noncommutative Ward Metric
Lechtenfeld, O.
Maceda, M.
title_short The Noncommutative Ward Metric
title_full The Noncommutative Ward Metric
title_fullStr The Noncommutative Ward Metric
title_full_unstemmed The Noncommutative Ward Metric
title_sort noncommutative ward metric
author Lechtenfeld, O.
Maceda, M.
author_facet Lechtenfeld, O.
Maceda, M.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We analyze the moduli-space metric in the static non-Abelian charge-two sector of the Moyal-deformed CP1 sigma model in 1+2 dimensions. After carefully reviewing the commutative results of Ward and Ruback, the noncommutative Kähler potential is expanded in powers of dimensionless moduli. In two special cases we sum the perturbative series to analytic expressions. For any nonzero value of the noncommutativity parameter, the logarithmic singularity of the commutative metric is expelled from the origin of the moduli space and possibly altogether.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146312
citation_txt The Noncommutative Ward Metric / O. Lechtenfeld, M. Maceda // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT lechtenfeldo thenoncommutativewardmetric
AT macedam thenoncommutativewardmetric
AT lechtenfeldo noncommutativewardmetric
AT macedam noncommutativewardmetric
first_indexed 2025-12-07T20:56:18Z
last_indexed 2025-12-07T20:56:18Z
_version_ 1850884466454560768