On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group
In this note we prove that the Heisenberg group with a left-invariant pseudo-Riemannian metric admits a completely integrable totally geodesic distribution of codimension 1. This is on the contrary to the Riemannian case, as it was proved by T. Hangan.
Gespeichert in:
| Datum: | 2010 |
|---|---|
| Hauptverfasser: | Batat, W., Rahmani, S. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2010
|
| Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146314 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group / W. Batat, S. Rahmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds
von: Chanu, C., et al.
Veröffentlicht: (2007) -
Geodesic completeness of the left-invariant metrics on RHn
von: S. Vukmirovic, et al.
Veröffentlicht: (2020) -
A characterization of totally umbilical hypersurfaces of a space form by geodesic mapping
von: E. Ц. Canfes, et al.
Veröffentlicht: (2013) -
A characterization of totally umbilical hypersurfaces of a space form by geodesic mapping
von: Canfes, E.Ö., et al.
Veröffentlicht: (2013) -
A Quartic Conformally Covariant Differential Operator for Arbitrary Pseudo-Riemannian Manifolds (Summary)
von: Paneitz, S.M.
Veröffentlicht: (2008)