Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2010 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146319 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146319 |
|---|---|
| record_format |
dspace |
| spelling |
Wehefritz-Kaufmann, B. 2019-02-08T20:39:38Z 2019-02-08T20:39:38Z 2010 Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 82C27; 82B20 DOI:10.3842/SIGMA.2010.039 https://nasplib.isofts.kiev.ua/handle/123456789/146319 We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model. This paper is a contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Systems and Quantum Symmetries (June 18–20, 2009, Prague, Czech Republic). The full collection is available at http://www.emis.de/journals/SIGMA/ISQS2009.html. We would like to thank V. Rittenberg for his continued interest and invaluable discussions and F.C. Alcaraz for sharing his manuscript about the Bethe ansatz with us. We would also like to acknowledge support from the Purdue Research Foundation. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring |
| spellingShingle |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring Wehefritz-Kaufmann, B. |
| title_short |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring |
| title_full |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring |
| title_fullStr |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring |
| title_full_unstemmed |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring |
| title_sort |
dynamical critical exponent for two-species totally asymmetric diffusion on a ring |
| author |
Wehefritz-Kaufmann, B. |
| author_facet |
Wehefritz-Kaufmann, B. |
| publishDate |
2010 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146319 |
| citation_txt |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ. |
| work_keys_str_mv |
AT wehefritzkaufmannb dynamicalcriticalexponentfortwospeciestotallyasymmetricdiffusiononaring |
| first_indexed |
2025-11-27T14:28:28Z |
| last_indexed |
2025-11-27T14:28:28Z |
| _version_ |
1850852389043568640 |