Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring

We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2010
Main Author: Wehefritz-Kaufmann, B.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146319
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146319
record_format dspace
spelling Wehefritz-Kaufmann, B.
2019-02-08T20:39:38Z
2019-02-08T20:39:38Z
2010
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 82C27; 82B20
DOI:10.3842/SIGMA.2010.039
https://nasplib.isofts.kiev.ua/handle/123456789/146319
We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model.
This paper is a contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Systems and Quantum Symmetries (June 18–20, 2009, Prague, Czech Republic). The full collection is available at http://www.emis.de/journals/SIGMA/ISQS2009.html. We would like to thank V. Rittenberg for his continued interest and invaluable discussions and F.C. Alcaraz for sharing his manuscript about the Bethe ansatz with us. We would also like to acknowledge support from the Purdue Research Foundation.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
spellingShingle Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
Wehefritz-Kaufmann, B.
title_short Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
title_full Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
title_fullStr Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
title_full_unstemmed Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
title_sort dynamical critical exponent for two-species totally asymmetric diffusion on a ring
author Wehefritz-Kaufmann, B.
author_facet Wehefritz-Kaufmann, B.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146319
citation_txt Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ.
work_keys_str_mv AT wehefritzkaufmannb dynamicalcriticalexponentfortwospeciestotallyasymmetricdiffusiononaring
first_indexed 2025-11-27T14:28:28Z
last_indexed 2025-11-27T14:28:28Z
_version_ 1850852389043568640