Level Set Structure of an Integrable Cellular Automaton

Based on a group theoretical setting a sort of discrete dynamical system is constructed and applied to a combinatorial dynamical system defined on the set of certain Bethe ansatz related objects known as the rigged configurations. This system is then used to study a one-dimensional periodic cellular...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2010
Автор: Takagi, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146324
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Level Set Structure of an Integrable Cellular Automaton / T. Takagi // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Based on a group theoretical setting a sort of discrete dynamical system is constructed and applied to a combinatorial dynamical system defined on the set of certain Bethe ansatz related objects known as the rigged configurations. This system is then used to study a one-dimensional periodic cellular automaton related to discrete Toda lattice. It is shown for the first time that the level set of this cellular automaton is decomposed into connected components and every such component is a torus.
ISSN:1815-0659