On Quadrirational Yang-Baxter Maps
We use the classification of the quadrirational maps given by Adler, Bobenko and Suris to describe when such maps satisfy the Yang-Baxter relation. We show that the corresponding maps can be characterized by certain singularity invariance condition. This leads to some new families of Yang-Baxter map...
Збережено в:
| Дата: | 2010 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2010
|
| Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146351 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On Quadrirational Yang-Baxter Maps / V.G. Papageorgiou, Yu.B. Suris, A.G. Tongas, A.P. Veselov // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We use the classification of the quadrirational maps given by Adler, Bobenko and Suris to describe when such maps satisfy the Yang-Baxter relation. We show that the corresponding maps can be characterized by certain singularity invariance condition. This leads to some new families of Yang-Baxter maps corresponding to the geometric symmetries of pencils of quadrics. |
|---|