Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors
We review our construction of a bifundamental version of the fuzzy 2-sphere and its relation to fuzzy Killing spinors, first obtained in the context of the ABJM membrane model. This is shown to be completely equivalent to the usual (adjoint) fuzzy sphere. We discuss the mathematical details of the b...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2010 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2010
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146360 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors / H. Nastase, C. Papageorgakis // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 45 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146360 |
|---|---|
| record_format |
dspace |
| spelling |
Nastase, H. Papageorgakis, C. 2019-02-09T09:39:46Z 2019-02-09T09:39:46Z 2010 Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors / H. Nastase, C. Papageorgakis // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 45 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81T75; 81T30 DOI:10.3842/SIGMA.2010.058 https://nasplib.isofts.kiev.ua/handle/123456789/146360 We review our construction of a bifundamental version of the fuzzy 2-sphere and its relation to fuzzy Killing spinors, first obtained in the context of the ABJM membrane model. This is shown to be completely equivalent to the usual (adjoint) fuzzy sphere. We discuss the mathematical details of the bifundamental fuzzy sphere and its field theory expansion in a model-independent way. We also examine how this new formulation affects the twisting of the fields, when comparing the field theory on the fuzzy sphere background with the compactification of the 'deconstructed' (higher dimensional) field theory. This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. It is a pleasure to thank Sanjaye Ramgoolam for many comments, discussions and collaboration in [9]. CP is supported by the STFC grant ST/G000395/1. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors |
| spellingShingle |
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors Nastase, H. Papageorgakis, C. |
| title_short |
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors |
| title_full |
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors |
| title_fullStr |
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors |
| title_full_unstemmed |
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors |
| title_sort |
bifundamental fuzzy 2-sphere and fuzzy killing spinors |
| author |
Nastase, H. Papageorgakis, C. |
| author_facet |
Nastase, H. Papageorgakis, C. |
| publishDate |
2010 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We review our construction of a bifundamental version of the fuzzy 2-sphere and its relation to fuzzy Killing spinors, first obtained in the context of the ABJM membrane model. This is shown to be completely equivalent to the usual (adjoint) fuzzy sphere. We discuss the mathematical details of the bifundamental fuzzy sphere and its field theory expansion in a model-independent way. We also examine how this new formulation affects the twisting of the fields, when comparing the field theory on the fuzzy sphere background with the compactification of the 'deconstructed' (higher dimensional) field theory.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146360 |
| citation_txt |
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors / H. Nastase, C. Papageorgakis // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 45 назв. — англ. |
| work_keys_str_mv |
AT nastaseh bifundamentalfuzzy2sphereandfuzzykillingspinors AT papageorgakisc bifundamentalfuzzy2sphereandfuzzykillingspinors |
| first_indexed |
2025-11-25T21:08:27Z |
| last_indexed |
2025-11-25T21:08:27Z |
| _version_ |
1850551205099470848 |
| fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 6 (2010), 058, 28 pages
Bifundamental Fuzzy 2-Sphere
and Fuzzy Killing Spinors?
Horatiu NASTASE † and Constantinos PAPAGEORGAKIS ‡
† Instituto de F́ısica Teórica, UNESP-Universidade Estadual Paulista,
R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP, Brazil
E-mail: nastase@ift.unesp.br
‡ Department of Mathematics, King’s College London,
The Strand, London WC2R 2LS, UK
E-mail: costis.papageorgakis@kcl.ac.uk
Received March 26, 2010, in final form July 09, 2010; Published online July 20, 2010
doi:10.3842/SIGMA.2010.058
Abstract. We review our construction of a bifundamental version of the fuzzy 2-sphere and
its relation to fuzzy Killing spinors, first obtained in the context of the ABJM membrane
model. This is shown to be completely equivalent to the usual (adjoint) fuzzy sphere. We
discuss the mathematical details of the bifundamental fuzzy sphere and its field theory
expansion in a model-independent way. We also examine how this new formulation affects
the twisting of the fields, when comparing the field theory on the fuzzy sphere background
with the compactification of the ‘deconstructed’ (higher dimensional) field theory.
Key words: noncommutative geometry; fuzzy sphere; field theory
2010 Mathematics Subject Classification: 81T75; 81T30
1 Introduction and Motivation
Noncommutative geometry is a tool that finds numerous applications in the description of
a wide range of physical systems. A celebrated example appearing in String Theory is in terms
of the polarisation phenomenon discovered by Myers, in which N Dp-branes in the presence of
transverse Ramond–Ramond flux distribute themselves onto the surface of a higher-dimensional
sphere [1]. The physics of the simplest case are captured by a U(N) theory, with the solution
involving fuzzy 2-spheres [2, 3, 4]. These are related to families of Hermitian matrices obeying
the SU(2) algebra
[Xi, Xj ] = 2iεijkXk. (1.1)
The Xi enter the physics as ground state solutions to the equations of motion via (1.1). Then
their commutator action on the space of all N × N matrices organises the matrices into rep-
resentations of SU(2) ' SO(3). An important aspect of the geometry of the fuzzy 2-sphere
involves the construction of fuzzy (matrix) spherical harmonics in SU(2) representations, which
approach the space of all classical S2 spherical harmonics in the limit of large matrices [3]. This
construction of fuzzy spherical harmonics allows the analysis of fluctuations in a non-Abelian
theory of Dp-branes to be expressed at large N in terms of an Abelian higher dimensional theory.
This describes a D(p + 2) brane wrapping the sphere, with N units of worldvolume magnetic
flux. At finite N the higher dimensional theory becomes a noncommutative U(1) with a UV
cutoff [5, 6, 7, 8].
?This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is
available at http://www.emis.de/journals/SIGMA/noncommutative.html
mailto:nastase@ift.unesp.br
mailto:costis.papageorgakis@kcl.ac.uk
http://dx.doi.org/10.3842/SIGMA.2010.058
http://www.emis.de/journals/SIGMA/noncommutative.html
2 H. Nastase and C. Papageorgakis
In this article we review a novel realisation of the fuzzy 2-sphere involving bifundamental
matrices. The objects that crucially enter the construction are discrete versions of Killing
spinors on the sphere [9, 10]1. The motivation is similar to the above and comes from the
study of the model recently discovered by Aharony, Bergman, Jafferis and Maldacena (ABJM)
describing the dynamics of multiple parallel M2-branes on a Zk M-theory orbifold [11], which
followed the initial investigations of Bagger–Lambert and Gustavsson (BLG) [12, 13, 14, 15].
The ABJM theory is an N = 6 superconformal Chern–Simons-matter theory with SO(6)
R-symmetry and gauge group U(N) × U(N̄). The two Chern–Simons (CS) terms have equal
but opposite levels (k,−k) and the matter fields transform in the bifundamental representation.
One can use the inverse CS level 1/k as a coupling constant to perform perturbative calculations.
At k = 1 the theory is strongly coupled and describes membranes in flat space. For k = 1, 2
the supersymmetry and R-symmetry are nonperturbatively enhanced to N = 8 and SO(8)
respectively [11, 16, 17]. It is then possible to use this action to investigate aspects of the
AdS4/CFT3 duality, with the role of the ’t Hooft coupling played by λ = N
k . The action of the
Zk orbifold on the C4 space transverse to the M2’s is such that taking k → ∞ corresponds to
shrinking the radius of the M-theory circle and entering a IIA string theory regime.
Of particular interest are the ground-state solutions of the maximally supersymmetric mas-
sive deformation of ABJM found by Gomis, Rodŕıguez-Gómez, Van Raamsdonk and Verlinde
(GRVV) [18]2. The theory still has a U(N) × U(N̄) gauge group and N = 6 supersymmetry
but conformal invariance is lost and the R-symmetry is broken down to SU(2)× SU(2)×U(1).
Its vacua are expected to describe a configuration of M2-branes blowing up into spherical M5-
branes in the presence of transverse flux through a generalisation of the Myers effect. At k = 1
these solutions should have a dual description in terms of the 1
2 -BPS M-theory geometries with
flux found in [20, 21].
Interestingly, the matrix part of the above ground-state equation is given by the following
simple relation, which we will refer to as the GRVV algebra3:
Gα = GαG†
βG
β −GβG†
βG
α, (1.2)
where Gα are N × N̄ and G†
α are N̄ × N matrices respectively. Given that the Myers effect
for the M2-M5 system should employ a 3-dimensional surface, one might initially expect this to
represent the defining relation for a fuzzy 3-sphere. Moreover, the explicit irreducible solutions
of (1.2) satisfy GαG†
α = 1, which seems to suggest the desired fuzzy 3-sphere structure.
However, we will see that the requisite SO(4) R-symmetry, that would be needed for the
existing fuzzy S3 construction of Guralnik and Ramgoolam (GR) [24, 25, 26], is absent in this
case. As was also shown in [9], the GR fuzzy S3 construction implies the following algebra
εmnpqX+
n X
−
p X
+
q = 2
(
(r + 1)(r + 3) + 1
r + 2
)
X+
m,
εmnpqX−
n X
+
p X
−
q = 2
(
(r + 1)(r + 3) + 1
r + 2
)
X−
m, (1.3)
which must be supplemented with the sphere condition
XmXm = X+
mX
−
m +X−
mX
+
m =
(r + 1)(r + 3)
2
≡ N
and the constraints
X+
mX
+
n = X−
mX
−
n = 0.
1The work in [9] was carried out in collaboration with S. Ramgoolam.
2The mass-deformed theory was also presented in [19].
3The same defining matrix equation appears while looking for BPS funnel solutions in the undeformed ABJM
theory and first appeared as such in [22]. Its relation to the M2–M5 system was also investigated in [23].
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 3
Here r defines a representation of SO(4) ' SU(2)×SU(2) by R+
r and R−
r , with labels ( r+1
2 , r−1
2 )
and ( r−1
2 , r+1
2 ) respectively for the two groups, and the X±
m are constructed from gamma mat-
rices. Even though the algebra (1.3) looks similar to the GRVV algebra (1.2), they coincide
only in the ‘fuzziest’ case with r = 1, i.e. the BLG A4-algebra, which in the Van Raamsdonk
SU(2)× SU(2) reformulation [27] is
R2Xm = −ikεmnpqXnX†pXq.
This fact suggests that equation (1.2) does not describe a fuzzy S3. Furthermore, the perturba-
tive calculations that lead to the above equation are valid at large k, where the ABJM theory is
describing IIA String Theory instead of M-theory and as a result a D2–D4 bound state in some
nontrivial background.
In the following, we will review how solutions to equation (1.2) actually correspond to a fuzzy
2-sphere, albeit in a realisation involving bifundamental instead of the usual adjoint matrices, by
constructing the full spectrum of spherical harmonics. This is equivalent to the usual construc-
tion in terms of the SU(2) algebra (1.1). In fact there is a one-to-one correspondence between
the representations of the SU(2) algebra Xi and the representations in terms of bifundamental
matrices. We will also show how the matrices Gα, which are solutions of the GRVV algebra
up to gauge transformations, correspond to fuzzy Killing spinors on the sphere, recovering the
usual Killing spinors in the large N limit.
The purpose of this article is to present the mathematical aspects of the above construc-
tion in a completely model-independent way and highlight some of its features simply starting
from (1.2). The reader who is interested in the full background and calculations in the con-
text of the ABJM model is referred to [9, 10], where an analysis of small fluctuations around
the ground-states at large N , k showed that they can be organised in terms of a U(1) theory
on R2,1 × S2, consistent with an interpretation as a D4-brane in Type IIA. The full 3-sphere
expected from M-theory then appeared as the large N , k = 1 limit of a fuzzy Hopf fibration,
S1/Zk ↪→ S3
F /Zk
π→ S2
F , in which the M-theory circle S1/Zk is fibred over the noncommutative
sphere base, S2
F .
We also discuss how this bifundamental formulation affects the twisting of the fields when
‘deconstructing’ a higher dimensional field theory. This is achieved by studying the field theory
around a fuzzy sphere background, where the twisting is necessary in order to preserve supersym-
metry. Even though the twisting is usually described in the context of compactifying the higher
dimensional ‘deconstructed’ theory, we show how this naturally arises from the bifundamental
fuzzy sphere field theory point of view.
The rest of this paper is organised as follows. In Section 2 we give the harmonic decomposition
of the GRVV matrices and relate them to the fuzzy supersphere. In Section 3 we present a one-
to-one map between the adjoint and bifundamental fuzzy sphere constructions, while in Section 4
we establish that connection in terms of the fuzzy Hopf fibration and define the fuzzy version
of Killing spinors on S2. We then discuss the resulting ‘deconstruction’ of higher dimensional
field theories on the 2-sphere, specifically the issue of twisting of the fields in order to preserve
supersymmetry. In Section 5 we review the process and discuss the differences between the
adjoint and bifundamental cases, while in Section 6 we briefly discuss a particular application
by summarising the results of [9, 10]. We conclude with some closing remarks in Section 7.
2 Constructing the fluctuation expansion
Notation. In this section, we will denote by k, l, m, n the matrix indices/indices of states in
a vector space, while keeping i, j = 1, . . . , 3 as vector indices on the fuzzy S2. We will also use j
for the SU(2) spin and Ylm for S2 spherical harmonics, following the standard notation. The
distinction should be clear by the context.
4 H. Nastase and C. Papageorgakis
2.1 Ground-state matrices and symmetries
We begin by writing the ground-state solutions to (1.2), found in [18] and given by(
G1
)
m,n
=
√
m− 1δm,n,(
G2
)
m,n
=
√
(N −m)δm+1,n,(
G†
1
)
m,n
=
√
m− 1δm,n,(
G†
2
)
m,n
=
√
(N − n)δn+1,m. (2.1)
Using the decomposition of the above complex into real coordinates
G1 = X1 + iX2, G2 = X3 + iX4, (2.2)
one easily sees that these satisfy
4∑
p=1
XpX
p ≡ GαG†
α = N − 1,
which at first glance would seem to indicate a fuzzy S3 structure. However, note that in the
above G1 = G†
1 for the ground-state solution. With the help of (2.2) this results in X2 = 0,
which is instead indicative of a fuzzy S2.
As usual in the case of fuzzy sphere constructions, the matrices Gα will be used to construct
both the symmetry operators (as bilinears in G, G†, also acting on Gα themselves) as well as
fuzzy coordinates, used to expand in terms of spherical harmonics on the fuzzy sphere.
2.1.1 GG† relations
As a first step towards uncovering the S2 structure we calculate the GG† bilinears(
G1G†
1
)
m,n
= (m− 1)δmn,(
G2G†
2
)
mn
= (N −m)δmn,(
G1G†
2
)
mn
=
√
(m− 1)(N −m+ 1)δm,n+1,(
G2G†
1
)
mn
=
√
(N −m)mδm+1,n,(
GαG†
α
)
mn
= (N − 1)δmn.
Defining Jα
β = GαG†
β we get the following commutation relation
[Jα
β , J
µ
ν ] = δµ
βJ
α
ν − δα
ν J
µ
β .
These are commutation relations of the generators of U(2). Then the Ji = (σ̃i)α
βJ
β
α are the
generators of SU(2) that result in the usual formulation of the fuzzy4 S2, in terms of the algebra
[Ji, Jj ] = 2iεijkJk. (2.3)
The trace J ≡ Jα
α = N−1 is a trivial U(1) ' U(2)/SU(2) generator, commuting with everything
else.
4Note that more correctly, we should have written Jα
β = GαG†
β and
Ji = (σ̃i)
α
βJβ
α = (σi)β
αJβ
α,
but in the following we will stick to the notation Jα
β . The kind of matrix multiplication that one has will be made
clear from the context.
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 5
2.1.2 G†G relations
Next, we calculate the G†G combinations(
G†
1G
1
)
mn
= (m− 1)δmn,(
G†
2G
2
)
mn
= (N −m+ 1)δmn −Nδm1δn1,(
G†
1G
2
)
mn
=
√
(m− 1)(N −m)δm+1,n,(
G†
2G
1
)
mn
=
√
(m− 2)(N −m+ 1)δm,n+1,(
G†
αG
α
)
mn
= Nδmn −Nδm1δn1
and define J̄β
α = G†
αGβ. The commutation relations for the above then form another copy
of U(2)
[J̄α
β , J̄
µ
ν ] = δµ
β J̄
α
ν − δα
ν J̄
µ
β
and similarly, J̄i = (σ̃i)α
β J̄
β
α once again satisfy the usual SU(2) algebra5, for another fuzzy S2
[J̄i, J̄j ] = 2iεijkJ̄k.
The trace
(J̄)mn = (J̄α
α )mn = Nδmn −Nδm1δn1, (2.4)
which is a U(1) ' U(2)/SU(2) generator, commutes with the SU(2) generators J̄i, though as
a matrix does not commute with the generators J1
2 and J2
1 of the first set of SU(2) generators.
At this point, it seems that we have two SU(2)’s, i.e. SO(4) ' SU(2) × SU(2) as expected
for a 3-sphere, even though we have not yet shown that these are proper space symmetries: We
have only found that the J, J̄ satisfy a certain symmetry algebra. In fact, we will next see that
these are not independent but rather combine into a single SU(2).
2.1.3 Symmetry acting on bifundamental (N, N̄) matrices
All the (N, N̄) bifundamental scalar matrices are of the type G, GG†G, GG†GG†G, . . .. The
simplest such terms are the Gα matrices themselves, the action of the symmetry generators on
which we will next investigate.
It is easy to check that the matrices Gα satisfy
G1G†
2G
2 −G2G†
2G
1 = G1, G2G†
1G
1 −G1G†
1G
2 = G2.
Using the definitions of Ji and J̄i, we find
JiG
α −GαJ̄i = (σ̃i)α
βG
β. (2.5)
The G1, G2 transform like the (1, 0) and (0, 1) column vectors of the spin-1
2 representation with
the J ’s and J̄ ’s matrices in the u(N)× u(N̄) Lie algebra.
5Again, note that we should have written J̄α
β
= G†
αGβ which emphasises that for J̄ , the lower index is the
first matrix index, and
J̄i = (σ̃i)
α
β J̄α
β
= (σi)β
αJ̄α
β
,
which emphasises that as matrices, the J̄i are defined with the Pauli matrices, whereas Ji was defined with their
transpose. However, we will again keep the notation J̄β
α .
6 H. Nastase and C. Papageorgakis
By taking Hermitian conjugates in (2.5), we find that the antibifundamental fields, G†
α,
transform as
G†
αJi − J̄iG
†
α = G†
β(σ̃i)β
α. (2.6)
Therefore the Gα, G†
α form a representation when acted by both Ji and J̄i, but neither
symmetry by itself gives a representation for Gα, G†
α. This means that the geometry we will be
constructing from bifundamental fluctuation modes has a single SU(2) symmetry, as opposed to
two. Equations (2.5) and (2.6) imply relations giving transformations between Ji and J̄i, thus
showing they represent the same symmetry
G†
γJiG
γ = (N + 1)J̄i, Gγ J̄iG
†
γ = (N − 2)Ji.
Writing the action of the full SU(2)×U(1) on the Gα, including the U(1) trace J̄ , we obtain
Jα
βG
γ −Gγ J̄α
β = δγ
βG
α − δα
βG
γ , (2.7)
while taking Hermitian conjugates of (2.7) we obtain the U(2) transformation of G†
α,
J̄α
βG
†
γ −G†
γJ
α
β = −δα
γG
†
β + δα
βG
†
γ .
The consequence of the above equations is that Gα has charge 1 under the U(1) generator J̄ .
Thus a global U(1) symmetry action on Gα does not leave the solution invariant, and we need
to combine with the action of J̄ from the gauge group to obtain an invariance.
We next turn to the construction of fuzzy spherical harmonics out of Gα.
2.2 Fuzzy S2 harmonics from U(N) × U(N̄) with bifundamentals
All bifundamental matrices of U(N)×U(N̄), are maps between two different vector spaces. On
the other hand, products of the bilinears GG† and G†G are adjoint matrices mapping back to
the same vector space. Thus, the basis of ‘fuzzy spherical harmonics’ on our fuzzy sphere will
be constructed out of all possible combinations: U(N) adjoints like GG†, GG†GG†, . . ., U(N̄)
adjoints like G†G, G†GG†G, . . ., and bifundamentals like G, GG†G, . . . and G†, G†GG†, . . ..
2.2.1 The adjoint of U(N)
Matrices like GG† act on an N dimensional vector space that we call V+. Thus the space
of linear maps from V+ back to itself, End(V+), is the adjoint of the U(N) factor in the
U(N) × U(N̄) gauge group and GG† are examples of matrices belonging to it. The space V+
forms an irreducible representation of SU(2) of spin j = N−1
2 , denoted by VN
V+ = VN .
The set of all operators of the form GG†, GG†GG†, . . . belong in End(V+) and can be expanded
in a basis of ‘fuzzy spherical harmonics’ defined using the SU(2) structure. Through the SU(2)
generators Ji we can form the fuzzy spherical harmonics as
Y 0 = 1, Y 1
i = Ji, Y 2
((i1i2)) = J((i1Ji2)), Y l
((i1···il)) = J((i1 · · ·Jil)).
In the above, the brackets ((i1 · · · il)) denote traceless symmetrisation. The complete space of
N × N matrices can be expanded in the fuzzy spherical harmonics with 0 ≤ l ≤ 2j = N − 1.
One indeed checks that
N2 =
2j∑
l=0
(2l + 1).
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 7
Then, a general matrix in the adjoint of U(N) can be expanded as
A =
N−1∑
l=0
l∑
m=−l
almYlm(Ji),
where
Ylm(Ji) =
∑
i
f
((i1···il))
lm Ji1 · · ·Jil .
The Ylm(Ji) become the usual spherical harmonics in the ‘classical’ limit, when N →∞ and the
cut-off in the angular momentum is removed.
In conclusion, all the matrices of U(N) can be organised into irreps of SU(2) constructed out
of Ji, which form the fuzzy spherical harmonics Ylm(Ji).
2.2.2 The adjoint of U(N̄)
In a fashion similar to the U(N) case, the matrices G†G, G†GG†G, . . ., are linear endomorphisms
of V−. These matrices are in the adjoint of the U(N̄) factor of the U(N)×U(N̄) gauge group,
and will be organised into irreps of the SU(2) constructed out of J̄i.
However, we now have a new operator: We have already noticed in (2.4) that the U(1)
generator J̄ is nontrivial. We can express it as
J̄ = G†
αG
α = N −NĒ11.
This means that End(V−) contains in addition to the identity matrix, the matrix Ē11 which
is invariant under SU(2). If we label the basis states in V− as |e−k 〉 with k = 1, . . . , N , then
Ē11 = |e−1 〉〈e
−
1 |. This in turn means that V− is a reducible representation
V− = V −
N−1 ⊕ V −
1 .
The first direct summand is the irrep of SU(2) with dimension N − 1 while the second is a one-
dimensional irrep. Indeed, one checks that the J̄i’s annihilate the state |e−1 〉, which is necessary
for the identification with the one-dimensional irrep to make sense.
As a result, the space End(V−) decomposes as follows
End(V−) = End(V −
N−1)⊕ End(V −
1 )⊕Hom(V −
N−1, V
−
1 )⊕Hom(V −
1 , V
−
N−1),
that is, the matrices split as Mµν = (Mij ,M11,M1i,Mi1). The first summand has a decomposi-
tion in terms of another set of fuzzy spherical harmonics
Ylm(J̄i) =
∑
i
f
((i1···il))
lm J̄i1 · · · J̄il ,
for l going from 0 to N − 2, since
(N − 1)2 =
N−2∑
l=0
(2l + 1).
This gives only matrices in the (N − 1) block, i.e. the End(V −
N−1). The second summand is just
one matrix transforming in the trivial irrep, Ē11. The remaining two N − 1 dimensional spaces
of matrices cannot be expressed as products of J̄i. They are spanned by
Ē1k = |e−1 〉〈e
−
k | ≡ g−−1k , Ēk1 = |e−k 〉〈e
−
1 | ≡ g−−k1 ,
8 H. Nastase and C. Papageorgakis
which are like spherical harmonics for Hom(V −
N−1, V
−
1 )⊕Hom(V −
1 , V
−
N−1). They transform in the
N−1 dimensional irrep of SU(2) under the adjoint action of J̄i and are zero mode eigenfunctions
of the U(1) symmetry operator J̄ .
Therefore, one can expand a general matrix in the adjoint of U(N̄) as
Ā = ā0Ē11 +
N−2∑
l=0
l∑
m=−l
ālmYlm(J̄i) +
N∑
k=2
bkg
−−
1k +
N∑
k=2
b̄kg
−−
k1 (2.8)
and note that we could have replaced Ē11 with the U(1) generator J̄ by redefining ā0 and ā00.
In the large N limit the Ylm(J̄i) become the ordinary spherical harmonics of S2, just
like Ylm(Ji). There are order N2 of these modes, which is appropriate as the fuzzy S2 can
roughly be thought of as a 2-dimensional space with each dimension discretised in N units. The
mode ā0, bk and b̄k can be neglected at large N , as they have much less than N2 degrees of
freedom.
2.2.3 SU(2) harmonic decomposition of bifundamental matrices
As in the case of the U(N̄) matrices, the bifundamental matrices of the form G, GG†G, . . .
giving physical fluctuating fields, are not enough to completely fill Hom(V−,V+). Given the
decomposition V− = V −
N−1 ⊕ V −
1 , we decompose Hom(V−,V+) as
Hom(V−,V+) = Hom(V −
N−1, V
+
N )⊕Hom(V −
1 , V
+
N ),
i.e. the matrices Mµν as (Miν ,M1ν). The first summand has dimension N(N − 1), while the
second has dimension N and forms an irreducible representation of SU(2).
Since the V −
N−1 and V +
N are irreps of SU(2) we can label the states with the eigenvalue of J̄3, J3
respectively. Given our normalisation of the SU(2) generators in (2.3), the usual spin is Jmax
3
2 .
The matrices in Hom(V −
N−1, V
+
N ) are of the form |e+m〉〈e−n |, where m = −N+1
2 , −N+3
2 , . . . , N−1
2 ,
n = −N+2
2 , −N+4
2 , . . . , N−2
2 denote the eigenvalues of J3
2 . These are spanned by matrices of the
form G(J̄i1)(J̄i2) · · · (J̄il), i.e. the matrix G times matrices in End(V −
N−1).
The operators in Hom(V −
N−1, V
+
N ) transform in representations of spin l+ 1
2 for l = 0, . . . , N−2.
The dimensions of these representations correctly add up to
N−2∑
l=0
(2l + 2) = N(N − 1).
This then gives the SU(2) decomposition of Hom(V −
N−1, V
+
N ) as
Hom(V −
N−1, V
+
N ) =
N−2⊕
l=0
Vl+1/2.
On the other hand, matrices |e+k 〉〈e
−
1 | ≡ Êk1 ∈ Hom(V −
1 , V
+
N ) cannot be written in terms of
the G’s and G†’s alone, because Gα acting on |e−1 〉 gives zero. The index k runs over the N
states in V+. Here Êk1 are eigenfunctions of the operator Ē11 with unit charge,
Êk1Ē11 = Êk1.
Combining all of the above, the bifundamental fluctuations rα can be expanded as follows
rα = rα
βG
β +
N∑
k=1
tαk Êk1,
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 9
with
rα
β =
N−2∑
l=0
l∑
m=−l
(rlm)α
βYlm(Ji).
We further decompose rα
β into a trace and a traceless part and define
sα
β = rα
β −
1
2
δα
β r
γ
γ , r = rγ
γ , Tα = tαk Êk1.
Thus the complete expansion of rα is given simply in terms of
rα = rGα + sα
βG
β + Tα. (2.9)
We could equivalently have written
rα =
N−2∑
l=0
l∑
m=−l
(rlm)α
βG
βYlm(J̄i) +
N∑
k=1
tαk Êk1
using the spherical harmonics in J̄ in (2.8). In the following, we will choose, without loss of
generality, to work with (2.9).
Until now we have focused on matrices in Hom(V−,V+) but the case of Hom(V+,V−) is
similar. The matrices G†, G†GG†, . . . will also form a representation of SU(2) given by J̄ ∼ G†G,
times a G† matrix. Once again one needs to add an extra T †α = (tαk )∗F̂1k fluctuation in order
to express the matrices F̂1k ≡ |e−1 〉〈e
+
k | ∈ Hom(V +
N , V
−
1 ). In fact, the result for the complete
fluctuating field can be obtained by taking a Hermitian conjugate of (2.9), yielding
r†α = G†
αr +G†
βs
β
α + T †α.
2.3 Fuzzy superalgebra
The matricesGα and Ji can be neatly packaged into supermatrices which form a representation of
the orthosymplectic Lie superalgebra OSp(1|2). The supermatrix is nothing but the embedding
of the N × N̄ matrices into U(2N). The adjoint fields live in the ‘even subspace’, while the
bifundamentals in the ‘odd subspace’. For a generic supermatrix
M =
(
A B
C D
)
the superadjoint operation is
M ‡ =
(
A† C†
−B† D†
)
.
For Hermitian supermatrices this is
X =
(
A B
−B† D
)
,
with A = A† and D = D† [28]. This gives the definition of the supermatrices
Ji =
(
Ji 0
0 J̄i
)
and Jα =
(
0
√
NGα
−
√
NG†
α 0
)
,
10 H. Nastase and C. Papageorgakis
where we raise and lower indices as Gα = εαβG
β, with ε = iσ̃2 = −iσ2. Then the SU(2)
algebra together with the relation (2.5) and the definition of Ji, J̄i result in the following
(anti)commutation relations
[Ji,Jj ] = 2iεijkJk, [Ji,Jα] = (σ̃i)αβJ
β,
{Jα,Jβ} = −(σ̃i)αβJi = −(iσ̃2σ̃i)αβJi,
which is the defining superalgebra OSp(1|2) for the fuzzy supersphere of [29].
It is known that the only irreducible representations of OSp(1|2) split into the spin-j plus the
spin-(j− 1
2) representations of SU(2), which correspond precisely to the irreducible representation
for the Ji (spin j) and J̄i (spin j − 1/2) that we are considering here6.
As a result, the most general representations of the fuzzy superalgebra, including Gα be-
sides Ji, J̄i, coincide with the most general representations of the two copies of SU(2). This
points to the fact that perhaps the representations in terms of Gα are equivalent to the repre-
sentations of SU(2). Next we will see that this is indeed the case.
3 Equivalence of fuzzy sphere constructions
We now prove that our new definition of the fuzzy 2-sphere in terms of bifundamentals is
equivalent to the usual definition in terms of adjoint representations of the SU(2) algebra.
The ABJM bifundamental scalars are interpreted as Matrix Theory (N × N) versions of
Euclidean coordinates. Accordingly, for our fuzzy space solution in the large N -limit one writes
Gα →
√
Ngα, with gα some commuting classical objects, to be identified and better under-
stood in due course. In that limit, and similarly writing Ji → Nxi, J̄i → Nx̄i, one has from
Sections 2.1.1 and 2.1.2 that the coordinates
xi = (σ̃i)α
βg
βg∗α, x̄i = (σ̃i)α
βg
∗
αg
β (3.1)
are two versions of the same Euclidean coordinate on the 2-sphere, xi ' x̄i.
In the above construction the 2-sphere coordinates xi, x̄i are invariant under multiplication
of the classical objects gα by a U(1) phase, thus we can define objects g̃α modulo such a phase,
i.e. gα = eiα(~x)g̃α. The GRVV matrices (2.1), that from now on we will denote by G̃α instead
of Gα, are fuzzy versions of representatives of g̃α, chosen such that g̃1 = g̃†1 (one could of course
have chosen a different representative for g̃α such that g̃2 = g̃†2 instead).
In terms of the gα, equation (3.1) is the usual Hopf map from the 3-sphere gαg†α = 1 onto
the 2-sphere xixi = 1, as we will further discuss in the next section. In this picture, the phase
is simply the coordinate on the U(1) fibre of the Hopf fibration, while the g̃α’s are coordinates
on the S2 base. While gα are complex coordinates acted upon by SU(2), the g̃α are real objects
acted upon by the spinor representation of SO(2), so they can be thought of as Lorentz spinors
in two dimensions, i.e. spinors on the 2-sphere.
The fuzzy version of the full Hopf map, Ji = (σ̃i)α
βG
βG†
α, can be given either using Gα =
UG̃α or Gα = ˜̂
GαÛ . The U and Û are unitary matrices that can themselves be expanded in
terms of fuzzy spherical harmonics
U =
∑
lm
UlmYlm(Ji),
with UU † = Û Û † = 1, implying that in the large-N limit (U, Û) → eiα(~x).
6See for instance Appendix C of [28]. The general spin-j is the Ji representation constructed from the GRVV
matrices, while the general spin j − 1
2
is the J̄i representation constructed from the GRVV matrices.
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 11
That means that by extracting a unitary matrix from the left or the right of Gα, i.e. modulo
a unitary matrix, the resulting algebra for G̃α
−G̃α = G̃βG̃†
βG̃
α − G̃αG̃†
βG̃
β (3.2)
should then be exactly equivalent to the usual SU(2) algebra that appears in the adjoint con-
struction: Both should give the same description of the fuzzy 2-sphere. We would next like to
prove this equivalence for all possible representations.
3.1 Representations
We first note that the irreducible representations of the algebra (3.2), given by the matrices (2.1),
indeed give the most general irreducible representations of SU(2). Defining J± = J1 ± iJ2,
J̄± = J̄1 ± iJ̄2, we obtain from (2.1) that
(J+)m,m−1 = 2
√
(m− 1)(N −m+ 1) = 2αN−1
2
,m−N+1
2
,
(J−)n−1,n = 2
√
(n− 1)(N − n+ 1) = 2αN−1
2
,n−N+1
2
,
(J3)mn = 2
(
m− N + 1
2
)
δmn
and
(J̄+)m,m−1 = 2
√
(m− 2)(N −m+ 1) = 2αN−2
2
,m−N+2
2
,
(J̄−)n−1,n = 2
√
(n− 2)(N − n+ 1) = 2αN−2
2
,n−N+2
2
,
(J̄3)mn = 2
(
m− N + 2
2
)
δmn +Nδm1δn1,
whereas the general spin-j representation of SU(2) is
(J+)m,m−1 = αj,m, (J−)n−1,n = αj,n, (J3)mn = mδmn
(and the rest zero), where
αjm ≡
√
(j +m)(j −m+ 1)
and m ∈ −j, . . . ,+j takes 2j + 1 values. Thus the representation for Ji is indeed the most
general N = 2j + 1 dimensional representation, and since (J̄+)11 = (J̄−)11 = (J̄3)11 = 0, the
representation for J̄i is also the most general (N − 1) = 2(j− 1
2)+1 dimensional representation.
We still have the U(1) generators completing the U(2) symmetry, which in the case of the
irreducible GRVV matrices G̃α are diagonal and give the fuzzy sphere constraint G̃αG̃†
α ∝ 1l,
G̃†
αG̃α ∝ 1l,
J = J1
1 + J2
2 = (N − 1)δmn, J̄ = J̄1
1 + J̄2
2 = Nδmn −Nδm1δn1,
where again (J̄)11 = 0, since J̄i is in the N −1×N −1 dimensional representation: The element
E11 = δm1δn1 is a special operator, so the first element of the vector space on which it acts is
also special, i.e. V− = V −
N−1 ⊕ V −
1 .
Moving to reducible representations of SU(2), the Casimir operator ~J2 = JiJi giving the
fuzzy sphere constraint is diagonal, with blocks proportional to the identity. The analogous
object that gives the fuzzy sphere constraint in our construction is the operator J = GαG†
α.
12 H. Nastase and C. Papageorgakis
Indeed, in the case of reducible matrices modulo unitary transformations, G̃α, we find (in the
same way as for ~J2 = JiJi for the SU(2) algebra)
J = diag((N1 − 1) 1lN1×N1 , (N2 − 1) 1lN2×N2 , . . . ) (3.3)
and similarly for J̄ = G†
αGα
J̄ = diag
(
N1
(
1− E
(1)
11
)
1lN1×N1 , N2
(
1− E
(2)
11
)
1lN2×N2 , . . .
)
. (3.4)
3.2 GRVV algebra → SU(2) algebra
For this direction of the implementation one does not need to consider the particular represen-
tations of the algebra; the matrices G̃α will be kept as arbitrary solutions. We define as before,
but now for an arbitrary solution Gα,
GαG†
β ≡ Jα
β ≡
Ji(σ̃i)α
β + Jδα
β
2
. (3.5)
Using the GRVV algebra it is straightforward to verify that GαG†
α ≡ J commutes with Jk.
Multiplying (3.2) from the right by (σ̃k)γ
αG
†
γ , one obtains
−Jk = GβG†
βJk − Jα
βJ
β
γ(σ̃k)γ
α.
Using the definition for the Jα
β factors in (3.5) and the relation [J, Jk] = 0, one arrives at
−Jk =
i
2
εijkJiJj ,
which is just the usual SU(2) algebra.
It is also possible to define
G†
αG
β ≡ J̄α
β ≡
J̄i(σ̃i)β
α + J̄δβ
α
2
and similarly obtain [J̄ , J̄k] = 0. By multiplying (3.2) from the left by (σ̃k)γ
αG
†
γ , we get in
a similar way
−J̄k =
i
2
εijkJ̄iJ̄j .
Thus the general SU(2) algebras for Ji and J̄i indeed follow immediately from (3.2) without
restricting to the irreducible GRVV matrices.
3.3 SU(2) algebra → GRVV algebra
This direction of the implementation is a priori more problematic since, as we have already seen,
the representations of Ji and J̄i are not independent. For the irreducible case in particular, V +
N
is replaced by the representation V −
N−1 ⊕ V −
1 , so we need to generalise this identification to
reducible representations in order to prove our result. As we will obtain this relation at the end
of this section and it should have been the starting point of the proof, we will close with some
comments summarising the complete logic.
We will first try to understand the classical limit. The Hopf fibration (3.1) can be rewritten,
together with the normalisation condition, as
gαg∗β =
1
2
[
xi(σ̃i)α
β + δα
β
]
.
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 13
By extracting a phase out of gα, we should obtain the variables g̃α on S2 instead of S3.
Indeed, the above equations can be solved for gα by
gα =
(
g1
g2
)
=
eiφ√
2(1 + x3)
(
1 + x3
x1 − ix2
)
= eiφg̃α, (3.6)
where eiφ is an arbitrary phase.
In the fuzzy case Gα and G†
β do not commute, and there are two different kinds of equations
corresponding to Ji and J̄i,
GαG†
β ≡
1
2
[
Ji(σ̃i)α
β + δα
βJ
]
, G†
βG
α ≡ 1
2
[
J̄i(σ̃i)α
β + δα
β J̄
]
. (3.7)
We also impose that [J, Jk] = 0, [J̄ , J̄k] = 0, so that J and J̄ are diagonal and proportional to
the identity in the irreducible components of Ji.
We solve the first set of equations in (3.7) by writing G1G†
1 = 1
2(J + J3), for which the most
general solution is G1 = TU , with T a Hermitian and U a unitary matrix. Since J + J3 is real
and diagonal, by defining
T =
1√
2
(J + J3)1/2
we obtain
Gα =
(
G1
G2
)
=
(
J + J3
J1 − iJ2
)
T−1
2
UN×N = G̃αUN×N . (3.8)
Thus G̃α is also completely determined by Ji, J .
Similarly, the second set of equations in (3.7) can be solved by considering G†
1G
1 = 1
2(J̄+ J̄3),
for which the most general solution is G1 = Û T̃ , where as before
T̃ =
1√
2
(
J̄ + J̄3
)1/2
,
to obtain
Gα =
(
G1
G2
)
= ÛN̄×N̄
T̃−1
2
(
J̄ + J̄3
J̄1 − iJ̄2
)
= Û
˜̂
Gα. (3.9)
Thus ˜̂
Gα is completely determined by J̄i, J̄ .
Comparing the two formulae for Gα we see that they are compatible if and only if
Û = TUT̃−1 and J̄1 − iJ̄2 = T̃ 2U−1T−1(J1 − iJ2)T−1U, (3.10)
where U is an arbitrary unitary matrix. These equations define an identification between the
two representations of SU(2), in terms of Ji and J̄i, needed in order to establish the equivalence
with the GRVV matrices.
We now analyse the equivalence for specific representations. For the irreducible represen-
tations of SU(2), we define J̄i from Ji as before (V +
N → V −
N−1 ⊕ V −
1 ) and J = (N − 1) 1lN×N ,
J̄ = N(1 − E11) 1lN×N . For reducible representations of SU(2), Ji can be split such that J3 is
block-diagonal, with various irreps added on the diagonal. One must then take J and J̄ of the
form in (3.3) and (3.4). The condition (3.10) is solved by U = 1 and J1, J2 block diagonal,
with the blocks being the irreps of dimensions N1, N2, N3, . . . , and the J̄1, J̄2 being also block
diagonal, but where each Nk × Nk irrep block is replaced with the (Nk − 1) × (Nk − 1) irrep
block, plus an E(k)
11 , just as for the GRVV matrices.
We can hence summarise the proof a posteriori in the following steps:
14 H. Nastase and C. Papageorgakis
1. Start with Ji (i = 1, 2, 3) in the reducible representation of SU(2), i.e. block diagonal with
the blocks being irreps of dimensions N1, N2, N3, . . . .
2. Take J = GαG†
α and J̄ = G†
αGα as in (3.3) and (3.4) since these are necessary conditions
for the Gα to satisfy the GRVV algebra. The condition [J, Jk] = 0 is used here.
3. The J̄i are completely determined (up to conventions) from Ji, J and J̄ by (3.10) and the
condition [J̄ , J̄k] = 0.
4. The G̃α are then uniquely determined by (3.8), while the ˜̂
Gα by (3.9).
5. The G̃α and ˜̂
Gα defined as above indeed satisfy the GRVV algebra.
4 Fuzzy Hopf fibration and fuzzy Killing spinors
Having established the equivalence between the adjoint (usual) and the bifundamental (in terms
of G̃α) formulations of the fuzzy S2 we turn towards ascribing an interpretation to the matri-
ces G̃α themselves.
4.1 Hopf fibration interpretation
One such interpretation was alluded to already in (2.2), where the fuzzy (matrix) coordinates
Gα were treated as complex spacetime coordinates. The irreducible GRVV matrices satisfy
G̃1G̃†
1 + G̃2G̃†
2 = N − 1 and G̃1 = G̃†
1. The first relation suggests a fuzzy 3-sphere, but the
second is an extra constraint which reduces the geometry to a 2d one. This is in agreement with
the fuzzy S2 equivalence that we already established in the previous section. The matrices G̃α
are viewed as representatives when modding out the U(N) symmetry, and the condition G̃1 = G̃†
1
amounts to a choice of representative of the equivalence class.
The construction of the fuzzy S2 in usual (Euclidean) coordinates was obtained by
Ji = (σ̃i)α
βG
βG†
α,
xi =
Ji√
N2 − 1
⇒
x1 =
J1√
N2 − 1
=
1√
N2 − 1
(
G1G†
2 +G2G†
1
)
,
x2 =
J2√
N2 − 1
=
i√
N2 − 1
(
G1G†
2 −G2G†
1
)
,
x3 =
J3√
N2 − 1
=
1√
N2 − 1
(
G1G†
1 −G2G†
2
)
,
Gα
√
N
→ gα
and we already stated that the relation between gα and xi is the classical Hopf map S3 π→
S2, (3.1).
Indeed, the description of the Hopf map in classical geometry is given as follows: One starts
with Cartesian coordinates X1, X2, X3, X4 on the unit S3 with
X2
1 +X2
2 +X2
3 +X2
4 = 1
and then goes to complex variables Z1 = X1 + iX2, Z2 = X3 + iX4, satisfying ZαZ∗
α = 1. The
Hopf map defines Cartesian coordinates on the unit S2 base of the fibration by
xi = (σ̃i)α
βZ
βZ∗
α, (4.1)
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 15
which is invariant under an S1 fibre defined by multiplication of Zα by a phase. The xi are
Euclidean coordinates on an S2 since
xixi = (σ̃i)α
β(σ̃i)µ
νZ
βZ∗
αZ
νZ∗
µ = 1
and this identifies Zα ≡ gα from above.
Let us now work in the opposite direction, starting from the classical limit and discretising the
geometry by demoting the Hopf map (4.1) from classical coordinates to finite matrices. We need
matrices for Zα which we call Gα. The coordinates xi transform in the spin-1 representation of
SU(2). If we want to build them from bilinears of the form G†G we need G, G† to transform in
the spin-1
2 representation. We also want a gauge symmetry to extend the U(1) invariance of Zα
(the S1 fiber of the Hopf map), and for N -dimensional matrices U(N) is the desired complex
gauge invariance that plays that role.
In the usual fuzzy 2-sphere, the xi are operators mapping an irreducible N -dimensional SU(2)
representation VN to itself. It is possible to do this in an SU(2)-covariant fashion because the
tensor product of spin-1 with VN contains VN . Since Gα are spin-1
2 , and 1
2 ⊗VN = VN+1⊕VN−1
does not contain VN , we need to work with reducible representations in order to have Gα map the
representation back to itself. The simplest thing to do would be to consider the representation
VN ⊕ VN−1. The next simplest thing is to work with VN ⊕ (VN−1 ⊕ V1) and this possibility
is chosen by the GRVV matrices [18] and allows a gauge group U(N) × U(N̄) which has a Z2
symmetry of exchange needed to preserve parity.
So the unusual property of the GRVV matrices G̃, the difference between V+ = VN and
V− = VN−1 ⊕ V1 follows from requiring a matrix realisation of the fuzzy S2 base of the
Hopf fibration. These in turn lead to the SU(2) decompositions of End(V+), End(V−),
Hom(V+,V−), Hom(V−,V+), for the fluctuation matrices that we saw in Section 2.2.7
The xi, G, G† are operators in V+⊕V− which is isomorphic, as a vector space, to VN ⊗V2.
The endomorphisms of VN correspond to the fuzzy sphere. The N states of VN generalise the
notion of points on S2 to noncommutative geometry. The 2-dimensional space V2 is invariant
under the SU(2). It is acted on by G, G† which have charge +1, −1 under the U(1) (corre-
sponding to (J, J̄)) acting on the fibre of the Hopf fibration, so we also have two points on top
of our fuzzy S2.
Since in this subsection we looked at a fibration of S3, we need to emphasise that the
fluctuation analysis does not have enough modes to describe the full space of functions on S3,
even if we drop the requirement of SO(4) covariance and allow for the possibility of an SU(2)×
U(1) description. As we explained above, the only remnant of the circle in the matrix con-
struction is the multiplicity associated with having states |+〉, |−〉 in V+ and V−. A classical
description of the S3 metric as a Hopf fibration contains a coordinate y transverse to the S2.
Instead, the matrix fluctuations of our solution are mapped to functions on S2 and hence lead
to a field theory on S2.
4.2 Killing spinor interpretation
We will close this circle of arguments by interpreting the classical objects g̃α, obtained in the
large-N limit of G̃α, as Killing spinors and fuzzy Killing spinors on the 2-sphere respectively.
We have seen that in the classical limit the relation between Ji and Gα becomes the first Hopf
map (3.1), and hence can be thought of as its fuzzy version. However, the above Hopf relation
is invariant under multiplication by an arbitrary phase corresponding to shifts on the S1 fibre,
7The usual fuzzy S2 has also been discussed in terms of the Hopf fibration, where the realisation of the SU(2)
generators in terms of bilinears in Heisenberg algebra oscillators yields an infinite dimensional space which admits
various projections to finite N constructions [30]. In that case the xi are not bilinears in finite matrices.
16 H. Nastase and C. Papageorgakis
so the objects g̃α obtained by extracting that phase in (3.6), i.e.
g̃α =
1√
2(1 + x3)
(
1 + x3
x1 − ix2
)
, (4.2)
are instead defined on the classical S2. In the Hopf fibration, the index of gα is a spinor index of
the global SO(3) symmetry for the 2-sphere. By extracting the S1 phase one obtains a real (or
rather, subject to a reality condition) g̃α and the α can be thought of as describing a (Majorana)
spinor of the SO(2) local Lorentz invariance on the 2-sphere. We will argue that the latter is
related to a Killing spinor. Note that this type of index identification easily extends to all even
spheres.
In the fuzzy version of (4.2), the G̃α obtained from Gα by extracting a unitary matrix, are
real objects defined on the fuzzy S2. They equal the GRVV matrices in the case of irreducible
representations, or
G̃ =
(
J + J3
J1 − iJ2
)
T−1
2
in general.
The standard interpretation, inherited from the examples of the SU(2) fuzzy 2-sphere and
other spaces, is that the matrix indices give rise to the dependence on the sphere coordinates and
the index α is a global symmetry index. However, we have just seen that already in the classical
picture one can identify the global symmetry spinor index with the local Lorentz spinor index.
Therefore we argue that the correct interpretation of the classical limit for G̃α is as a spinor
with both global and local Lorentz indices, i.e. the Killing spinors on the sphere ηαI . In the
following we will use the index α interchangeably for the two.
In order to facilitate the comparison with the Killing spinors, we express the classical limit
of the Ji–G̃α relation as
xi ' x̄i = (σi)α
β g̃†β g̃
α. (4.3)
Killing spinors on Sn
We now review some of the key facts about Killing spinors that we will need for our discussion.
For more details, we refer the interested reader to e.g. [31, 32, 33, 34, 35].
On a general sphere Sn, one has Killing spinors satisfying
Dµη(x) = ± i
2
mγµη(x).
There are two kinds of Killing spinors, η+ and η−, which in even dimensions are related by the
chirality matrix, i.e. γn+1, through η+ = γn+1η
−, as can be easily checked. The Killing spinors
on Sn satisfy orthogonality, completeness and a reality condition. The latter depends on the
application, sometimes taken to be the modified Majorana condition, which mixes (or identifies)
the local Lorentz spinor index with the global symmetry spinor index of Sn. For instance, on S4
the orthogonality and completeness are respectively8,
η̄IηJ = ΩIJ and ηα
J η̄
J
β = −δα
β ,
8The charge conjugation matrix in n dimensions satisfies in general
CT = κC, γT
µ = λCγµC−1,
where κ = ±, λ = ± and it is used to raise/lower indices. The Majorana condition is then given by
η̄ = ηT C.
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 17
where the index I is an index in a spinorial representation of the SO(n+1)G invariance group of
the sphere and the index α is an index in a spinorial representation of the SO(n)L local Lorentz
group on the sphere. The indices are then identified by the modified Majorana spinor condition
as follows9
η̄I ≡
(
ηI
)T
C
(n)
− = −
(
ηJ
)†
γn+1ΩIJ ,
where ΩIJ = iσ2 ⊗ 1ln
2×
n
2
is the invariant tensor of Sp(n
2 ), satisfying ΩIJΩJK = δI
K .
The Euclidean coordinates of Sn are bilinear in the Killing spinors
xi = (Γi)IJ η̄
Iγn+1η
J , (4.4)
where η are of a single kind (+ or −), or equivalently η̄I
+η
J
−. In the above the Γ are in SO(n+1)G,
while the γ in SO(n)L.
Starting from Killing spinors on Sn, one can construct all the higher spherical harmonics.
As seen in equation (4.4), Euclidean coordinates on the sphere are spinor bilinears. In turn,
symmetric traceless products of the xi’s construct the scalar spherical harmonics Y k(xi).10 One
can also construct the set of spinorial spherical harmonics by acting with an appropriate operator
on Y kηI
Ξk,+ = [(k + n− 1 + iD/)Y k]η+,
Ξk,− = [(k + n− 1 + iD/)Y k]η− = [(k + 1 + iD/)Y k+1]η+.
Note that in the above the derivatives act only on the scalar harmonics Y k.
Any spinor on the sphere can be expanded in terms of spinorial spherical harmonics, Ψ =∑
k ψkΞk,±. Consistency imposes that the Ξk,± can only be commuting spinors. The Killing
spinors are then themselves commuting spinors, as they are used to construct the spinorial
spherical harmonics.
For higher harmonics the construction extends in a similar way but the formulae are more
complicated and, as we will not need them for our discussion, we will not present them here.
The interested reader can consult e.g. [37].
Killing spinors on S2 and relation between spinors
For the particular case of the S2, γi = Γi = σi for both the SO(2)L and the SO(3)G Clifford
algebras. Then the two C-matrices can be chosen to be: C+ = −σ1, giving κ = λ = +, and
C− = iσ2 = ε, giving κ = λ = −. Note that with these conventions one has C−γ3 = iσ2σ3 =
−σ1 = C+. In the following we will choose the Majorana condition to be defined with respect
to C−.
Equation (4.4) then gives for n = 2
η̄I = (ηT )IC− ⇒ xi = (σi)IJ(ηT )IC−γ3η
J . (4.5)
The orthonormality and completeness conditions for the Killing spinors on S2 are
η̄IηJ = εIJ and ηα
J η̄
J
β = −δα
β ,
while the modified Majorana condition is
(ηJ)† = εIJ η̄
I ≡ εIJ(ηI)TC−.
9For more details on Majorana spinors and charge conjugation matrices see [31, 36] and the Appendix of [35].
10These are the higher dimensional extensions of the usual spherical harmonics Y lm(xi) for S2.
18 H. Nastase and C. Papageorgakis
Since C− = ε, by making both indices explicit and by renaming the index I as α̇ for later use,
one also has
(ηαα̇)† = ηαα̇ ≡ εαβεα̇β̇η
ββ̇ . (4.6)
Finally, the spinorial spherical harmonics on S2 are
Ξ±lm = [(l + 1 + iD/ )Ylm]η±
and thus the spherical harmonic expansion of an S2-fermion is (writing explicitly the sphere
fermionic index α)
ψα =
∑
lm,±
ψlm,±Ξ±,α
lm =
∑
lm,±
[ψlm,±(l + 1 + iD/ )Ylm]αβη
β
±.
To construct explicitly the Killing spinor, we must first define a matrix S, that can be used
to relate between the two different kinds of spinors on S2, spherical and Euclidean.
On the 2-sphere, one defines the Killing vectors Ka
i such that the adjoint action of the SU(2)
generators on the fuzzy sphere fields becomes a derivation in the large-N limit11
[Ji, ·] → 2iKa
i ∂a = 2iεijkxj∂k.
One can then explicitly check that Ka
i produces a Lorentz transformation on the gamma matri-
ces12
Ka
i (σ̃i)α
β = −eam
(
SσmS−1
)
β
α ≡ −
(
SγaS−1
)
β
α
,
where eam is the vielbein on the sphere and S is a unitary matrix defining the transformation
(|a| = 1)
S = a
− sin θ
2 e
iφ/2 −i cos
θ
2
eiφ/2
cos
θ
2
e−iφ/2 −i sin θ
2
e−iφ/2
.
Imposing the (symplectic) reality condition on S
εαβ
(
S−1
)β
γ
εγδ =
(
ST
)
α
δ
= Sδ
α, (4.7)
we fix a =
√
i
∗
and obtain the relations(
SσiS
−1
)
α
β =
(
SσiS
−1
)β
α
,
(
Sγ3S
−1
)α
β
= −xi(σ̃i)α
β ,(
SγaS
−1
)α
β
= −habK
b
i (σ̃i)α
β. (4.8)
If one has real spinors obeying
(χαα̇)† = χαα̇ ≡ εαβεα̇β̇χββ̇,
which was identified in (4.6) as the modified Majorana spinor condition, it follows from (4.7)
that rotation by the matrix S preserves this relation, i.e.
((χα̇S)α)† =
(
S−1χα̇
)α ≡ −εα̇β̇
(
S−1
)αβ
χββ̇ = εα̇β̇εαβ(χβ̇S)β . (4.9)
11Precise expressions for the Killing vectors as well as a set of useful identities can be found in Appendix A
of [10].
12A Lorentz transformation on the spinors acts as Λµ
νγν = SγµS−1, with S unitary.
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 19
We can now define the explicit form of the Killing spinor
ηIα =
(
S−1
)α
β
ηIβ
0 =
1√
2
(
S−1
)α
β
εβI =
1√
2
SI
Jε
αJ ,
where in the last equality we used the (symplectic) reality condition (4.7) on S. From (4.9) it
is clear that the ηIα obey the modified Majorana condition. It is then possible to use (4.8) to
prove that
xi = (σi)IJ η̄
Iγ3η
J ,
hence verifying that the ηIα are indeed Killing spinors. One can also explicitly check that
Da
((
S−1
)α
β
εβI
)
= +
i
2
(γa)α
β
(
S−1
)β
γ
εγI ,
which in turn means that
1√
2
(
S−1
)α
β
εβI = ηαI
+ .
Identif ication with Killing spinor
Using (4.6), we rewrite (4.5) as
xi = (σi)I
J
(
ηI
)†
γ3η
J = (σ̃i)I
J
(√
2P+η
I
)†(√2P+η
J
)
, (4.10)
where P± = 1
2(1 ± γ3). Now comparing (4.10) with (4.3) one is led to the following natural
large-N relation, G̃α →
√
2NP+η
I , provided the spinor indices α and I get identified, i.e.
G̃α
√
N
≡ g̃α ↔ g̃I ≡
√
2P+η
I = (P+)α
β(S−1)β
γε
γI = (P+)α
βS
I
Jε
βJ = SI
J(P−)J
Kε
αK .
Thus, the Weyl projection can be thought of as ‘removing’ either α or I, since only one of the
two spinor components is non-zero.
In order to further check this proposed identification at large-N we now calculate
∂a
(√
2P+η
I
)
= − i
2
(
SγaS
−1
)I
J
(√
2P+η
J
)
+ T̃a
(√
2P+η
I
)
, (4.11)
where T̃θ = 0 and T̃φ = i
2 cos θ and
(∂aS)S−1 = − i
2
SγaS
−1 + STaS
−1
by explicitly evaluation, with Tθ = 0 and Tφ = − i
2 cos θγ3.
This needs to be compared with the analogous result given in equation (4.48) of [9] from the
classical limit of the adjoint action of Ji on G̃α, i.e. from [Ji, G̃
α],
∂ag̃
α =
i
2
ĥabK
b
i (σ̃i)a
β g̃
β = − i
2
(
SγaS
−1
)α
β
g̃β . (4.12)
In [9] it was also verified that the above could reproduce the correct answer for ∂axi, which can
be rewritten as
∂axi = − i
2
g̃†α
[
(σ̃i)α
β
(
SγaS
−1
)β
γ
−
(
SγaS
−1
)α
β
(σ̃i)β
γ
]
g̃γ .
20 H. Nastase and C. Papageorgakis
Note that even though there is a difference between (4.11) and (4.12), given by the purely
imaginary term T̃a that is proportional to the identity, the two answers for ∂axi exactly agree,
since in that case the extra contribution cancels. This extra term is a reflection of a double
ambiguity: First, the extra index α on ηI can be acted upon by matrices, even though it is Weyl-
projected, in effect multiplying the Weyl-projected ηI by a complex number; if the complex
number is a phase, it will not change any expressions where the extra index is contracted, thus
we have an ambiguity against multiplication by a phase. Second, g̃α is just a representative of
the reduction of gα by an arbitrary phase, so it is itself only defined up to a phase. The net
effect is that the identification of the objects in (4.11) and (4.12) is only up to a phase. Indeed,
locally, near φ ' 0, one could write
g̃αe
i
2
φ cos θ ↔
√
2P+η
I
but it is not possible to get an explicit expression for the phase over the whole sphere.
4.3 Generalisations
On a general S2n some elements of the above analysis of fuzzy Killing spinors carry through.
That is because even though it is possible to write for every S2n
xA = η̄I(ΓA)IJγ2n+1η
J ,
where ηI are the Killing spinors, one only has possible fuzzy versions of the quaternionic and
octonionic Hopf maps to match it against, i.e. for 2n = 4, 8. We will next find and interpret the
latter in terms of Killing spinors on the corresponding spheres.
S4
The second Hopf map, S7 π→ S4, is related to the quaternionic algebra. Expressing the S7 in
terms of complex coordinates gα, now with α = 1, . . . , 4, the sphere constraint becomes gαg†α = 1
(gαg†α = 1 ⇒ xAxA = 1; A = 1, . . . , 5). The map in this case is (see for instance [38])
xA = gβ(ΓA)α
βg
†
α,
with (ΓA)α
β the 4× 4 SO(5) gamma matrices13. Here we have identified the spinor index I of
SO(5) with the Lorentz spinor index α of SO(4).
Initially, the gα’s are complex coordinates acted upon by SU(4), but projecting down to the
base of the Hopf fibration we replace gα in the above formula with real g̃α’s, instead acted
upon by the spinorial representation of SO(4), i.e. by spinors on the 4-sphere. This process is
analogous to what we saw for the case of the 2-sphere. Once again, it is possible to identify g̃α
with the Killing spinors, this time on S4.
This suggest that one should also be able to write a spinorial version of the fuzzy 4-sphere
for some bifundamental matrices G̃α, satisfying
JA = G̃β(ΓA)α
βG̃
†
α, J̄A = G̃†
α(ΓA)α
βG̃
β,
where JA, J̄A generate an SO(5) spinor rotation on G̃α by
JAG̃
α − G̃αJ̄A = (ΓA)α
βG̃
β.
This in turn implies that the fuzzy sphere should be described by the same GRVV algebra as
for the S2 case
G̃α = G̃αG̃†
βG̃
β − G̃βG̃†
βG̃
α
13These are constructed as: σ1 and σ3 where 1 is replaced by 1l2×2 and σ2 where i is replaced by iσ1, iσ2, iσ3.
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 21
but now with G̃α being 4 complex matrices that describe a fuzzy 4-sphere, which poses an
interesting possibility that we will however not further investigate here.
S8
The third Hopf map, S15 π→ S8, is related to the octonionic algebra. The S15 is expressed now
by the real objects gT
αg
α = 1, α = 1, . . . , 16 that can be split into two groups (1, . . . , 8 and
9, . . . , 16). The Hopf map is expressed by [39] (gT
αgα = 1 ⇒ xAxA = 1)
xA = gT
α (ΓA)αβgβ ,
where (ΓA)αβ are the SO(9) gamma-matrices14. Similarly for the case of the S4 above, even
though gα’s are initially 16-dimensional variables acted by the spinor representation of SO(9), one
can project down to the base of the Hopf fibration and replace the gα’s with real 8-dimensional
objects on the 8-sphere g̃α. Then the g̃α’s are identified with the Killing spinors of S8.
This once again suggests that one should be able to write a spinorial version of the fuzzy
8-sphere for some bifundamental matrices G̃α satisfying
JA = G̃α(ΓA)αβG̃T
β , J̄A = G̃T
α(ΓA)αβG̃β,
where JA, J̄A generate an SO(9) spinor rotation on G̃α by
JAG̃α − G̃αJ̄A = (ΓA)α
βG̃β
and implies the same GRVV algebra, but with the G̃α’s now being 16 dimensional real matrices
that describe the fuzzy 8-sphere.
5 Deconstruction vs. twisted compactification
We now describe certain changes which occur when ‘deconstructing’ a supersymmetric field
theory on the bifundamental fuzzy S2, in contrast to the usual S2, and comparing with the
compactified higher-dimensional theory.
The term ‘deconstruction’ was first coined in [40] for a specific four-dimensional model but
more generally extends to creating higher dimensional theories through field theories with matrix
degrees of freedom of high rank. In our particular case, the fuzzy S2 background arises as
a solution in a d-dimensional field theory and fluctuations around this background ‘deconstruct’
a d + 2-dimensional field theory. We will focus on the case where the d + 2-dimensional field
theory compactified on S2 is supersymmetric.
5.1 Adjoint fuzzy S2
This construction is familiar in the context of D-branes, though any field theory with a fuzzy S2
background will also do. For instance, the example we will follow is [41], where an N = 1
supersymmetric massive SU(N) gauge theory around a fuzzy S2 background solution, coming
14The gamma-matrices are constructed similarly to the S4 case as follows: Γi =
(
0 λi
−λi 0
)
, Γ8 =(
0 1l8×8
1l8×8 0
)
, Γ9 =
(
1l8×8 0
0 − 1l8×8
)
, i.e. from σ2 with λi replacing i, and from σ1 and σ3 with 1 replaced
by 1l8×8. The λi satisfy {λi, λi} = −2δij (similarly to the iσi in the case of S4) and are constructed from
the structure constants of the algebra of the octonions [39]. An explicit inversion of the Hopf map is given by
gα = [(1 + x9)/2]1/2uα for α = 1, . . . , 8 and gα = [2(1 + x9)]
−1/2(x8 − xiλi)uα−8 for α = 9, . . . , 16, with uα a real
8-component SO(8) spinor satisfying uαuα = 1 thus parametrising the S7 fibre.
22 H. Nastase and C. Papageorgakis
from the low energy theory on a stack of D3-branes in some nontrivial background, was identified
with the Maldacena–Núñez theory of IIB 5-branes with twisted compactification on S2 [42].
This construction was known to give an N = 1 massive theory after dimensional reduction that
can be identified with the starting point, thus the D3-brane theory around the fuzzy sphere
deconstructs the 5-brane theory.
The twisting of the 5-brane fields can be understood both in the compactification as well as
the deconstruction pictures. In compactification, and for the [41] model, it is known from [43]
that in order to preserve supersymmetry on D-branes with curved worldvolumes one needs to
twist the various D-brane fields. Specifically, that means embedding the S2 spin connection,
taking values in SO(2) ' U(1), into the R-symmetry. As a result, the maximal supersymmetry
one can obtain after compactification is N = 1 (corresponding to U(1)R). On the other hand,
in deconstruction, the need for twisting will instead appear by analysing the kinetic operators
of the deconstructed fields.
The brane intuition, though useful, is not necessary, and in the following we will understand
the twisting as arising generally from requiring supersymmetry of the dimensionally reduced
compactified theory. This will be matched by looking at the kinetic term diagonalisation of the
deconstructed theory.
Compactif ication
On a 2-sphere, scalar fields are decomposed in the usual spherical harmonics Ylm(xi) = Ylm(θ, φ)
and can thus give massless fields after compactification (specifically, the l = 0 modes). However,
that is no longer true for spinors and gauge fields. In that case, the harmonic decomposition in
terms of Ylm(xi) must be redefined in order to make explicit the Lorentz properties of spinors
and vectors on the 2-sphere, i.e. to make them eigenvectors of their corresponding operators.
Spinors on the sphere are eigenvectors of the total angular momentum J2
i . These are of two
types: Eigenvectors Ω of the orbital angular momentum L2
i (Cartesian spherical spinors) and
eigenvectors Υ of the Dirac operator on the sphere −i∇̂S2 = −iĥabema σm∇b (spherical basis
spinors), whose square is R2(−i∇̂S2)2 = J2
i + 1
4 . The two are related by a transformation with
a sphere-dependent matrix S, already described in Section 4.2. The former are decomposed in
the spinorial spherical harmonics
Ωα̂
jlm =
∑
µ=±1
2
C(l, 1
2 , j;m− µ, µ,m)Yl,m−µ(θ, φ)χα̂
µ,
where j = q± = l ± 1
2 and α̂ = 1, 2, as
ψα̂ =
∑
lm
ψ
(+)
lm Ωα̂
l+ 1
2
,lm
+ ψ
(−)
lm Ωα̂
l− 1
2
,lm
.
Both have a minimum mass of 1
2R , since the Dirac operator squares to J2
i + 1
4 = j(j + 1) + 1
4 .
Similarly, the vector fields do not simply decompose in Ylm’s, but rather in the vector spherical
harmonics
1
R
Tjm =
1√
j(j + 1)
[
sin θ∂θYjmφ̂− csc θ∂φYjmθ̂
]
,
1
R
Sjm =
1√
j(j + 1)
[
∂θYjmθ̂ + ∂φYjmφ̂
]
,
with j ≥ 1. It is more enlightening to show the decomposition of the field strength on the
2-sphere
1
R
csc θFθφ = R2
∑
lm
Flm
1√
l(l + 1)
∆S2Ylm,
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 23
with l = 1, 2, . . . . Thus again only massive and no massless modes are obtained after dimensional
reduction [41]. Note that as we can see, the expansion in spinorial or vector spherical harmonics
corresponds to redefining the expansion in terms of Ylm (rearranging its coefficients).
Therefore in the absence of twisting supersymmetry will be lost after dimensional reduction,
since all S2-fermions will be massive but some massless S2-scalars will still remain. Twisting,
however, allows for the presence of fermionic twisted-scalars (T-scalars), i.e. fermions that are
scalars of the twisted SO(2)T Lorentz invariance group (with charge T ), which will stay massless.
In this way the number of supersymmetries in the dimensionally reduced theory equals the
number of fermionic T-scalars.
One chooses the twisted Lorentz invariance of the sphere as QT = Qxy + QA, where Qxy is
the charge under the original Lorentz invariance of the sphere SO(2)xy, and QA is the charge
under the U(1) subgroup of R-symmetry. This is necessary because one needs to identify the
U(1) spin connection (‘gauge field of Lorentz invariance’) with a corresponding connection in
the R-symmetry subgroup, i.e. a gauge field from the transverse manifold.
An example of an action for twisted fields is provided by the result of [43], for a bosonic
T-spinor Ξ, fermionic T-scalars Λ and T-vectors ga∫
ddxd2σ
√
h
[
− i
2
µΛ̄γµ∂µΛ− i
2
µḡaγ
µ∂µg
a+µωabḠabΛ−2∂µΞ†∂µΞ−8Ξ†
(
−i∇̂S2
)2Ξ], (5.1)
where µ is the mass parameter, Gab = ∂agb−∂bga is the field strength of the fermionic T-vector,
and as usual ωab = 1√
g ε
ab is the symplectic form on the sphere. We note that the kinetic terms in
the flat directions (µ, ν) are given by their bosonic or fermionic nature, while the type of kinetic
terms in the sphere directions (a, b) are dictated by their T-spin and the number of derivatives
on it are again dictated by their statistics (bosons have two derivatives, fermions only one).
These fields are decomposed in spherical harmonics corresponding to their T-charge. Then
e.g. the fermionic T-scalar can have a massless (l = 0) mode, which after dimensional reduction
will still be a fermion and give N = 1 supersymmetry.
Deconstruction
To have a fuzzy sphere background of the usual type, we need in the worldvolume theory at
least 3 scalar modes φi to satisfy [φi, φj ] = 2iεijkφk, but usually there are more. Then the
need for e.g. bosonic T-spinors is uncovered by diagonalising the kinetic term for all the scalar
fluctuations around the fuzzy sphere background. For instance in [41], there are 6 scalar modes
forming 3 complex scalars Φi, with fluctuations δΦi = ai + ibi and kinetic term∫
ddxd2σ
√
hδΦ†
i
[(
1 + J2
)
δij − iεijkJk
]
δΦj .
The (complete set of) eigenvectors of this kinetic operator are given by the vector spherical har-
monics JiYlm and the spinorial spherical harmonics Ωα̂
jlm. This kinetic operator is then diagona-
lised by defining T-vectors na coming from the vector spherical harmonics and T-spinors ξα̂
coming from the spinor spherical harmonics. When completing this program, the deconstructed
action is the same as the compactified one, e.g. for [41] one again obtains the twisted action (5.1).
At finite N , the matrices are expanded in the fuzzy spherical harmonics Ylm(Ji), becoming
the Ylm(xi) of classical S2, but the above diagonalisation corresponds in the classical limit to re-
organising the expansion (this includes a nontrivial action on the coefficients of the expansion)
to form the spinorial, vector, etc. spherical harmonics.
Thus for the adjoint construction all the fields on the classical S2 appear as limits of functions
expanded in the scalar fuzzy spherical harmonics, Ylm(Ji), and the various tensor structures of S2
fields were made manifest by diagonalising the various kinetic operators.
24 H. Nastase and C. Papageorgakis
5.2 Bifundamental fuzzy S2
The case of the bifundamental fuzzy S2 is richer. One wants to once again compare with the
same compactification picture. However, the particulars of the deconstruction will be different.
Deconstruction
Here we need a fuzzy sphere background of GRVV type, hence at least 2 complex scalar modesRα
in the worldvolume theory giving the fuzzy sphere background in terms of Rα = fGα, with Gα
satisfying (1.2). The fluctuation of this field will be called rα.
Performing the deconstruction follows a set of steps similar to the adjoint fuzzy S2, namely
one wants to expand in the fuzzy spherical harmonics and in the classical limit reorganise the
expansion (acting nontrivially on the coefficients of the expansion) to construct the spinor,
vector, etc. spherical harmonics. However now there are some subtle points that one needs
to take into account. We have two kinds of fuzzy spherical harmonics, Ylm(Ji) and Ylm(J̄i),
both giving the same Ylm(xi) in the classical limit. Adjoint fields, e.g. the gauge fields, will
be decomposed in terms of one or the other according to their respective gauge groups. On
the other hand for bifundamental fields one must first ‘extract’ a bifundamental GRVV matrix,
G̃α or G̃†
a, before one is left with adjoints that can be decomposed in the same way. We detailed
this procedure for rα in Section 2.2.3. The expansion in Ylm(xi) must be then reorganised as
in the usual fuzzy S2 in order to diagonalise the kinetic operator, thus producing the spinor,
vector, etc. spherical harmonics.
The most important difference is that G̃α has a spinor index on S2; in particular we saw in
Section 4.2 that in the classical limit g̃α is identified with a Killing spinor. That means that the
operation of ‘extracting’ G̃a corresponds to automatically twisting the fields! Let us make this
concrete by considering a specific example.
In the mass-deformed ABJM theory, one has besides the Rα field a doublet of scalar fields Qα̇
with fluctuation qα̇, where α̇ is an SU(2) index transverse to the sphere. Thus the qα̇ start off life
as scalars. However, due to their bifundamental nature, one must first ‘extract’ G̃α →
√
Ng̃α, by
writing qα̇ = Qα̇
αG̃
α. In order to diagonalise the kinetic operator, we perform an S-transformation
and construct
Ξα
α̇ = i(P+S
−1Qα̇)α +
(
P−S
−1Qα̇
)α
, (5.2)
after which the kinetic term becomes the twisted action
N2
∫
d3xd2σ
√
ĥ
[
1
2
Ξ̄α̇(−i2µ∇̂S2)2Ξα̇ −
1
2
∂µΞ̄α̇∂µΞα̇ − 3µ2Ξ̄α̇Ξα̇
]
. (5.3)
More generally, the functions on the sphere are actually sections of the appropriate bundle:
Either ordinary functions, sections of the spinor or the line bundle. Specifically, anything without
an α index is a T-scalar, one α index implies a T-spinor and two α indices a T-scalar plus a
T-vector in a (1 ⊕ 3) decomposition. That is, the U(1)T invariance is identified with the
SO(2)L ' U(1)L Lorentz invariance of the sphere, described by the index α.
In addition to this, an interesting new alternative to the above construction also arises. We
can choose to keep G̃α in the spherical harmonic expansion (by considering it as part of the
spherical harmonic in the classical limit). The derivative of the spherical harmonic expansion
then includes the derivative of g̃α given in (4.12) and one obtains a fuzzy version of the classical
derivative operator
q†
β̇
Ji − J̄iq
†
β̇
→ 2iKa
i ∂aq
†
β̇
+ q†
β̇
xi.
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 25
This operator acts on all bifundamental fields, including the ABJM fermions ψ†α. In this new
kind of expansion, we recover the usual Lorentz covariant kinetic term. For instance for the
scalar fields qα̇ of ABJM we obtain (after a rescaling of the fields)
1
g2
Y M
∫
d3xd2σ
√
h
[
−∂Aq†α̇∂Aq
α̇
]
,
where A = µ, a is a total (worldvolume + fuzzy sphere) index. The price one pays for this
simplicity (compared to (5.3)) is however that the classical N → ∞ limit of the supersym-
metry transformation is very subtle, since a naive application will relate fields with different
finite N gauge structures (bifundamentals with adjoints), naively implying a gauge-dependent
supersymmetry parameter.
But at least formally, by keeping G̃α inside the spherical harmonic expansion, we obtain an
un-twisted, fully supersymmetric version of the action on the whole worldvolume plus the fuzzy
sphere.
6 Supersymmetric D4-brane action on fuzzy S2 from ABJM
As a concrete application of the whole discussion thus far, we present the final results for the
Lagrangian obtained by studying fluctuations around the fuzzy S2 ground-state of the mass-
deformed ABJM model.
The fluctuating fields are the rα scalars forming the fuzzy sphere background, transverse
scalars qα̇, gauge fields Aµ and µ, fermions ψα and χα̇. The spherical harmonic expansion on
the fuzzy sphere is for each of the above
rα = rG̃α + sα
βG̃
β =
[
(r)lmδ
α
β + (sα
β)lm
]
Ylm(Ji)G̃β,
qα̇ = Qα̇
αG̃
α = (Qα̇
α)lmYlm(Ji)g̃α,
ψα = ψ̃G̃α + Uα
βG̃β =
[
(ψ̃)lmδ
β
α + (Uα
β)lm
]
Ylm(Ji)G̃β,
χα̇ = χα̇αG̃
α = (χα̇α)lmYlm(Ji)G̃α,
Aµ = Alm
µ Ylm(Ji), µ = Âlm
µ Ylm(J̄i),
becoming in the classical limit
rα = rg̃α + sα
β g̃
β =
[
(r)lmδ
α
β + (sα
β)lm
]
Ylm(xi)g̃β,
qα̇ = Qα̇
αg̃
α = (Qα̇
α)lmYlm(xi)g̃α,
ψα = ψ̃g̃α + Uα
β g̃β =
[
(ψ̃)lmδ
β
α + (Uα
β)lm
]
Ylm(xi)g̃β ,
χα̇ = χα̇αg̃
α = (χα̇α)lmYlm(xi)g̃α,
Aµ = Alm
µ Ylm(xi), µ = Âlm
µ Ylm(xi).
These can be further redefined as
sα
β(σ̃i)β
α = Ka
i Aa + xiφ, Υα
α̇ = (P−S−1χα̇)α,
with Aa becoming the sphere component of the gauge field and Φ = 2r + φ becoming a scalar,
while 2r−φ is ‘eaten’ by the gauge field in a Higgs mechanism that takes us from nonpropagating
CS gauge field to propagating YM field in 3d [44]. The final supersymmetric version of the action
is then
Sphys =
1
g2
YM
∫
d3xd2σ
√
h
[
−1
4
FABF
AB − 1
2
∂AΦ∂AΦ− µ2
2
Φ2 − ∂Aq†α̇∂Aq
α̇ +
µ
2
ωabFabΦ
26 H. Nastase and C. Papageorgakis
+
(
1
2
Ῡα̇D̃5Υα̇ +
i
2
µῩα̇Υα̇ + h.c.
)
− (ψS)D̃5
(
S−1ψ†
)
+
i
2
µ(ψS)
(
S−1ψ†
)]
.
The twisting of the fields that have a G̃α in their spherical harmonic expansion is done as
follows: First, we twist by expressing qα̇ as Qα̇
α and ψα as ψ̃, Uα
β. We then redefine the twisted
fields in order to diagonalise their kinetic operator by further writing Qα̇
α according to (5.2) and
Uα
β =
1
2
Ui(σ̃i)α
β , Ūα
β =
1
2
Ui(σ̃i)α
β,
Ui = Ka
i ga + ψ̂xi, Ūi = Ka
i ḡa + ¯̂
ψxi.
The final twisted action is
Sphys =
1
g2
YM
∫
d3xd2σ
√
h
[
− 1
4
FABF
AB − 1
2
∂AΦ∂AΦ− µ2
2
Φ2 +
µ
2
ωabFabΦ
+
(
1
2
Ῡα̇D5Υα̇ +
i
2
µῩα̇Υα̇ + h.c.
)
+
1
4
Ξ̄α̇
(
−2i
µ
∇S2
)2
Ξα̇ − ∂µΞ̄α̇∂µΞα̇
− 3
2
µ2Ξ̄α̇Ξα̇ +
1
4
Λ̄/∂Λ +
1
4
ḡa/∂g
a +
i
4
ωabḠabΛ +
i
2
µΛ̄Λ
]
.
7 Conclusions
In this paper we reviewed our fuzzy S2 construction in terms of bifundamental matrices, origi-
nally obtained in the context of the ABJM model in [9, 10], focusing on its model-independent
mathematical aspects. We found that this is completely equivalent to the usual adjoint SU(2)
construction, but that it involves fuzzy versions of Killing spinors on the 2-sphere, which we
defined. We described the qualitative differences that appear when using the bifundamental S2
to ‘deconstruct’ higher dimensional field theories. The expansion of the fields involving fuzzy
Killing spinors result in an automatic twisting of the former on the sphere. Alternatively, in-
cluding the Killing spinors in the fuzzy spherical harmonic expansion provides a new approach
to the construction of fields on S2.
We expect that the generality of the construction will lead to it finding a place in numerous
applications both in the context of physical systems involving bifundamental matter, e.g. quiver
gauge theories as in [45], as well as noncommutative geometry. We hope to further report on
both of these aspects in the future.
Acknowledgements
It is a pleasure to thank Sanjaye Ramgoolam for many comments, discussions and collaboration
in [9]. CP is supported by the STFC grant ST/G000395/1.
References
[1] Myers R.C., Dielectric-branes, J. High Energy Phys. 1999 (1999), no. 12, 022, 41 pages, hep-th/9910053.
[2] Hoppe J., Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, PhD
Thesis, Massachusetts Institute of Technology, 1982, available at http://hdl.handle.net/1721.1/15717.
[3] Hoppe J., Diffeomorphism groups, quantization and SU(∞), Internat. J. Modern Phys. A 4 (1989), 5235–
5248.
[4] Madore J., The fuzzy sphere, Classial Quantum Gravity 9 (1992), 69–88.
http://dx.doi.org/10.1088/1126-6708/1999/12/022
http://arxiv.org/abs/hep-th/9910053
http://hdl.handle.net/1721.1/15717
http://dx.doi.org/10.1142/S0217751X89002235
http://dx.doi.org/10.1088/0264-9381/9/1/008
Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors 27
[5] Iso S., Kimura Y., Tanaka K., Wakatsuki K., Noncommutative gauge theory on fuzzy sphere from matrix
model, Nuclear Phys. B 604 (2001), 121–147, hep-th/0101102.
[6] Dasgupta K., Sheikh-Jabbari M.M., Van Raamsdonk M., Matrix perturbation theory for M-theory on a PP-
wave, J. High Energy Phys. 2002 (2002), no. 5, 056, 52 pages, hep-th/0205185.
[7] Dasgupta K., Sheikh-Jabbari M.M., Van Raamsdonk M., Protected multiplets of M-theory on a plane wave,
J. High Energy Phys. 2002 (2002), no. 9, 021, 41 pages, hep-th/0207050.
[8] Papageorgakis C., Ramgoolam S., Toumbas N., Noncommutative geometry, quantum effects and DBI-
scaling in the collapse of D0-D2 bound states, J. High Energy Phys. 2006 (2006), no. 1, 030, 31 pages,
hep-th/0510144.
[9] Nastase H., Papageorgakis C., Ramgoolam S., The fuzzy S2 structure of M2-M5 systems in ABJM membrane
theories, J. High Energy Phys. 2009 (2009), no. 5, 123, 61 pages, arXiv:0903.3966.
[10] Nastase H., Papageorgakis C., Fuzzy Killing spinors and supersymmetric D4 action on the fuzzy 2-sphere
from the ABJM model, J. High Energy Phys. 2009 (2009), no. 12, 049, 52 pages, arXiv:0908.3263.
[11] Aharony O., Bergman O., Jafferis D.L., Maldacena J., N = 6 superconformal Chern–Simons-matter theories,
M2-branes and their gravity duals, J. High Energy Phys. 2008 (2008), no. 10, 091, 38 pages, arXiv:0806.1218.
[12] Bagger J., Lambert N., Modeling multiple M2-branes, Phys. Rev. D 75 (2007), 045020, 7 pages,
hep-th/0611108.
[13] Bagger J., Lambert N., Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77
(2008), 065008, 6 pages, arXiv:0711.0955.
[14] Bagger J., Lambert N., Comments on multiple M2-branes, J. High Energy Phys. 2008 (2008), no. 2, 105,
15 pages, arXiv:0712.3738.
[15] Gustavsson A., Algebraic structures on parallel M2-branes, Nuclear Phys. B 811 (2009), 66–76,
arXiv:0709.1260.
[16] Gustavsson A., Rey S.-J., Enhanced N = 8 supersymmetry of ABJM theory on R(8) and R(8)/Z(2),
arXiv:0906.3568.
[17] Kwon O.-K., Oh P., Sohn J., Notes on Supersymmetry Enhancement of ABJM theory, J. High Energy Phys.
2009 (2009), no. 8, 093, 22 pages, arXiv:0906.4333.
[18] Gomis J., Rodŕıguez-Gómez D., Van Raamsdonk M., Verlinde H., A massive study of M2-brane proposals,
J. High Energy Phys. 2008 (2008), no. 9, 113, 29 pages, arXiv:0807.1074.
[19] Hosomichi K., Lee K.-M., Lee S., Lee S., Park J., N = 5, 6 superconformal Chern–Simons theories and
M2-branes on orbifolds, J. High Energy Phys. 2008 (2008), no. 9, 002, 24 pages, arXiv:0806.4977.
[20] Bena I., Warner N.P., A harmonic family of dielectric flow solutions with maximal supersymmetry, J. High
Energy Phys. 2004 (2004), no. 12, 021, 22 pages, hep-th/0406145.
[21] Lin H., Lunin O., Maldacena J.M., Bubbling AdS space and 1/2 BPS geometries, J. High Energy Phys.
2004 (2004), no. 10, 025, 68 pages, hep-th/0409174.
[22] Terashima S., On M5-branes in N = 6 membrane action, J. High Energy Phys. 2008 (2008), no. 8, 080,
11 pages, arXiv:0807.0197.
[23] Hanaki K., Lin H., M2-M5 systems in N = 6 Chern–Simons theory, J. High Energy Phys. 2008 (2008),
no. 9, 067, 14 pages, arXiv:0807.2074.
[24] Guralnik Z., Ramgoolam S., On the polarization of unstable D0-branes into non-commutative odd spheres,
J. High Energy Phys. 2001 (2001), no. 2, 032, 17 pages, hep-th/0101001.
[25] Ramgoolam S., On spherical harmonics for fuzzy spheres in diverse dimensions, Nuclear Phys. B 610 (2001),
461–488, hep-th/0105006.
[26] Ramgoolam S., Higher dimensional geometries related to fuzzy odd-dimensional spheres, J. High Energy
Phys. 2002 (2002), no. 10, 064, 29 pages, hep-th/0207111.
[27] Van Raamsdonk M., Comments on the Bagger–Lambert theory and multiple M2-branes, J. High Energy
Phys. 2008 (2008), no. 5, 105, 9 pages, arXiv:0803.3803.
[28] Hasebe K., Kimura Y., Fuzzy supersphere and supermonopole, Nuclear Phys. B 709 (2005), 94–114,
hep-th/0409230.
[29] Grosse H., Reiter G., The fuzzy supersphere, J. Geom. Phys. 28 (1998), 349–383, math-ph/9804013.
[30] Balachandran A.P., Kurkcuoglu S., Vaidya S., Lectures on fuzzy and fuzzy SUSY physics, hep-th/0511114.
http://dx.doi.org/10.1016/S0550-3213(01)00173-0
http://arxiv.org/abs/hep-th/0101102
http://dx.doi.org/10.1088/1126-6708/2002/05/056
http://arxiv.org/abs/hep-th/0205185
http://dx.doi.org/10.1088/1126-6708/2002/09/021
http://arxiv.org/abs/hep-th/0207050
http://dx.doi.org/10.1088/1126-6708/2006/01/030
http://arxiv.org/abs/hep-th/0510144
http://dx.doi.org/10.1088/1126-6708/2009/05/123
http://arxiv.org/abs/0903.3966
http://dx.doi.org/10.1088/1126-6708/2009/12/049
http://arxiv.org/abs/0908.3263
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://dx.doi.org/10.1103/PhysRevD.75.045020
http://arxiv.org/abs/hep-th/0611108
http://dx.doi.org/10.1103/PhysRevD.77.065008
http://arxiv.org/abs/0711.0955
http://dx.doi.org/10.1088/1126-6708/2008/02/105
http://arxiv.org/abs/0712.3738
http://dx.doi.org/10.1016/j.nuclphysb.2008.11.014
http://arxiv.org/abs/0709.1260
http://arxiv.org/abs/0906.3568
http://dx.doi.org/10.1088/1126-6708/2009/08/093
http://arxiv.org/abs/0906.4333
http://dx.doi.org/10.1088/1126-6708/2008/09/113
http://arxiv.org/abs/0807.1074
http://dx.doi.org/10.1088/1126-6708/2008/09/002
http://arxiv.org/abs/0806.4977
http://dx.doi.org/10.1088/1126-6708/2004/12/021
http://dx.doi.org/10.1088/1126-6708/2004/12/021
http://arxiv.org/abs/hep-th/0406145
http://dx.doi.org/10.1088/1126-6708/2004/10/025
http://arxiv.org/abs/hep-th/0409174
http://dx.doi.org/10.1088/1126-6708/2008/08/080
http://arxiv.org/abs/0807.0197
http://dx.doi.org/10.1088/1126-6708/2008/09/067
http://arxiv.org/abs/0807.2074
http://dx.doi.org/10.1088/1126-6708/2001/02/032
http://arxiv.org/abs/hep-th/0101001
http://dx.doi.org/10.1016/S0550-3213(01)00315-7
http://arxiv.org/abs/hep-th/0105006
http://dx.doi.org/10.1088/1126-6708/2002/10/064
http://dx.doi.org/10.1088/1126-6708/2002/10/064
http://arxiv.org/abs/hep-th/0207111
http://dx.doi.org/10.1088/1126-6708/2008/05/105
http://dx.doi.org/10.1088/1126-6708/2008/05/105
http://arxiv.org/abs/0803.3803
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.040
http://arxiv.org/abs/hep-th/0409230
http://dx.doi.org/10.1016/S0393-0440(98)00023-0
http://arxiv.org/abs/math-ph/9804013
http://arxiv.org/abs/hep-th/0511114
28 H. Nastase and C. Papageorgakis
[31] van Nieuwenhuizen P., An introduction to simple supergravity and the Kaluza–Klein program, in Relativity,
Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, 823–932.
[32] Eastaugh A., van Nieuwenhuizen P., Harmonics and spectra on general coset manifolds, Kyoto Summer
Institute 1985:0001, Preprint ITP-SB-85-43.
[33] van Nieuwenhuizen P., The complete mass spectrum of d = 11 supergravity compactified on S4 and a general
mass formula for arbitrary cosets M4, Classial Quantum Gravity 2 (1985), 1–20.
[34] Gunaydin M., van Nieuwenhuizen P., Warner N.P., General construction of the unitary representations of
anti-de Sitter superalgebras and the spectrum of the S4 compactification of 11-dimensional supergravity,
Nuclear Phys. B 255 (1985), 63–92.
[35] Nastase H., Vaman D., van Nieuwenhuizen P., Consistency of the AdS7 × S4 reduction and the origin of
self-duality in odd dimensions, Nuclear Phys. B 581 (2000), 179–239, hep-th/9911238.
[36] Van Nieuwenhuizen P., Supergravity, Phys. Rep. 68 (1981), 189–398.
[37] Kim H.J., Romans L.J. , van Nieuwenhuizen P., Mass spectrum of chiral ten-dimensional N = 2 supergravity
on S5, Phys. Rev. D 32 (1985), 389–399.
[38] Wu Y.S., Zee A., Membranes, higher Hopf maps, and phase interactions, Phys. Lett. B 207 (1988), 39–43.
[39] Bernevig B.A., Hu J.-P., Toumbas N., Zhang S.-C., Eight-dimensional quantum hall effect and “octonions”,
Phys. Rev. Lett. 91 (2003), 236803, 4 pages, cond-mat/0306045.
[40] Arkani-Hamed N., Cohen A.G., Georgi H., (De)constructing dimensions, Phys. Rev. Lett. 86 (2001), 4757–
4761, hep-th/0104005.
[41] Andrews R.P., Dorey N., Deconstruction of the Maldacena–Núñez compactification, Nuclear Phys. B 751
(2006), 304–341, hep-th/0601098.
[42] Maldacena J.M., Nuñez C., Supergravity description of field theories on curved manifolds and a no go
theorem, Internat. J. Modern Phys. A 16 (2001), 822–855, hep-th/0007018.
[43] Bershadsky M., Vafa C., Sadov V., D-branes and topological field theories, Nuclear Phys. B 463 (1996),
420–434, hep-th/9511222.
[44] Mukhi S., Papageorgakis C., M2 to D2, J. High Energy Phys. 2008 (2008), no. 5, 085, 15 pages,
arXiv:0803.3218.
[45] Maldacena J., Martelli D., The unwarped, resolved, deformed conifold: fivebranes and the baryonic branch
of the Klebanov–Strassler theory, arXiv:0906.0591.
http://dx.doi.org/10.1088/0264-9381/2/1/003
http://dx.doi.org/10.1016/0550-3213(85)90129-4
http://dx.doi.org/10.1016/S0550-3213(00)00193-0
http://arxiv.org/abs/hep-th/9911238
http://dx.doi.org/10.1016/0370-1573(81)90157-5
http://dx.doi.org/10.1103/PhysRevD.32.389
http://dx.doi.org/10.1016/0370-2693(88)90882-9
http://dx.doi.org/10.1103/PhysRevLett.91.236803
http://arxiv.org/abs/cond-mat/0306045
http://dx.doi.org/10.1103/PhysRevLett.86.4757
http://arxiv.org/abs/hep-th/0104005
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.013
http://arxiv.org/abs/hep-th/0601098
http://dx.doi.org/10.1142/S0217751X01003937
http://arxiv.org/abs/hep-th/0007018
http://dx.doi.org/10.1016/0550-3213(96)00026-0
http://arxiv.org/abs/hep-th/9511222
http://dx.doi.org/10.1088/1126-6708/2008/05/085
http://arxiv.org/abs/0803.3218
http://arxiv.org/abs/0906.0591
1 Introduction and Motivation
2 Constructing the fluctuation expansion
2.1 Ground-state matrices and symmetries
2.1.1 GG relations
2.1.2 GG relations
2.1.3 Symmetry acting on bifundamental (N,) matrices
2.2 Fuzzy S2 harmonics from U(N)U() with bifundamentals
2.2.1 The adjoint of U(N)
2.2.2 The adjoint of U( )
2.2.3 SU(2) harmonic decomposition of bifundamental matrices
2.3 Fuzzy superalgebra
3 Equivalence of fuzzy sphere constructions
3.1 Representations
3.2 GRVV algebra SU(2) algebra
3.3 SU(2) algebra GRVV algebra
4 Fuzzy Hopf fibration and fuzzy Killing spinors
4.1 Hopf fibration interpretation
4.2 Killing spinor interpretation
4.3 Generalisations
5 Deconstruction vs. twisted compactification
5.1 Adjoint fuzzy S2
5.2 Bifundamental fuzzy S2
6 Supersymmetric D4-brane action on fuzzy S2 from ABJM
7 Conclusions
References
|