Demazure Modules, Chari–Venkatesh Modules and Fusion Products
Let g be a finite-dimensional complex simple Lie algebra with highest root θ. Given two non-negative integers m, n, we prove that the fusion product of m copies of the level one Demazure module D(1,θ) with n copies of the adjoint representation ev₀V(θ) is independent of the parameters and we give ex...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2014 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2014
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146400 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Demazure Modules, Chari–Venkatesh Modules and Fusion Products / B. Ravinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Let g be a finite-dimensional complex simple Lie algebra with highest root θ. Given two non-negative integers m, n, we prove that the fusion product of m copies of the level one Demazure module D(1,θ) with n copies of the adjoint representation ev₀V(θ) is independent of the parameters and we give explicit defining relations. As a consequence, for g simply laced, we show that the fusion product of a special family of Chari-Venkatesh modules is again a Chari-Venkatesh module. We also get a description of the truncated Weyl module associated to a multiple of θ.
|
|---|---|
| ISSN: | 1815-0659 |